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1 Introduction

Robust Control Toolbox Product Description
Design robust controllers for uncertain plants

Robust Control Toolbox™ provides functions, algorithms, and blocks for
analyzing and tuning control systems for performance and robustness. You
can create uncertain models by combining nominal dynamics with uncertain
elements, such as uncertain parameters or unmodeled dynamics. You can
analyze the impact of plant model uncertainty on control system performance
and identify worst-case combinations of uncertain elements. H-infinity and
mu-synthesis techniques let you design controllers that maximize robust
stability and performance.

The toolbox automatically tunes both SISO and MIMO controllers. These can
include decentralized, fixed-structure controllers with multiple tunable blocks
spanning multiple feedback loops. The toolbox lets you tune one controller
against a set of plant models. You can also tune gain-scheduled controllers.
You can specify multiple tuning objectives, such as reference tracking,
disturbance rejection, stability margins, and closed-loop pole locations.

Key Features

• Modeling of systems with uncertain parameters or neglected dynamics

• Worst-case analysis of stability margins and sensitivity to disturbances

• Automatic tuning of centralized, decentralized, and multiloop controllers

• Automatic tuning of gain-scheduled controllers

• Robustness analysis and controller tuning in Simulink®

• H-infinity and mu-synthesis algorithms

• General-purpose LMI solvers
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Product Requirements

Product Requirements
Robust Control Toolbox software requires that you have installed Control
System Toolbox™ software.
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1 Introduction

Modeling Uncertainty
At the heart of robust control is the concept of an uncertain LTI system.
Model uncertainty arises when system gains or other parameters are not
precisely known, or can vary over a given range. Examples of real parameter
uncertainties include uncertain pole and zero locations and uncertain gains.
You can also have unstructured uncertainties, by which is meant complex
parameter variations satisfying given magnitude bounds.

With Robust Control Toolbox software you can create uncertain LTI models
as MATLAB® objects specifically designed for robust control applications. You
can build models of complex systems by combining models of subsystems
using addition, multiplication, and division, as well as with Control System
Toolbox commands like feedback and lft.

For information about LTI model types, see “Linear System Representation”.
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System with Uncertain Parameters

System with Uncertain Parameters
For instance, consider the two-cart "ACC Benchmark" system [13] consisting
of two frictionless carts connected by a spring shown as follows.

ACC Benchmark Problem

The system has the block diagram model shown below, where the individual
carts have the respective transfer functions.

G s
m s

G s
m s

1
1

2

2
2

2

1

1

( ) =

( ) = .

The parameters m1, m2, and k are uncertain, equal to one plus or minus 20%:

m1 = 1 – 0.2
m2 = 1 – 0.2
k = 1 – 0.2
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1 Introduction

"ACC Benchmark" Two-Cart System Block Diagram y1 = P(s) u1

The upper dashed-line block has transfer function matrix F(s):

F s
G s

G s( ) = ( )
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⎣
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⎤

⎦
⎥ −[ ] +

−
⎡

⎣
⎢

⎤

⎦
⎥ ( )⎡⎣ ⎤⎦

0
1 1

1
1

0
1

2 .

This code builds the uncertain system model P shown above:

m1 = ureal('m1',1,'percent',20);
m2 = ureal('m2',1,'percent',20);
k = ureal('k',1,'percent',20);

s = zpk('s');
G1 = ss(1/s^2)/m1;
G2 = ss(1/s^2)/m2;

F = [0;G1]*[1 -1]+[1;-1]*[0,G2];
P = lft(F,k);

The variable P is a SISO uncertain state-space (USS) object with four states
and three uncertain parameters, m1, m2, and k. You can recover the nominal
plant with the command:
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System with Uncertain Parameters

zpk(P.nominal)

ans =

1
---------------------------
(s^2 + 5.995e-16) (s^2 + 2)

Continuous-time zero/pole/gain model.

If the uncertain model P(s) has LTI negative feedback controller

C s
s

s
( ) =

+( )
+( )

100 1

0 001 1

3

3.

then you can form the controller and the closed-loop system y1 = T(s) u1 and
view the closed-loop system’s step response on the time interval from t=0 to
t=0.1 for a Monte Carlo random sample of five combinations of the three
uncertain parameters k, m1, and m2 using this code:

C=100*ss((s+1)/(.001*s+1))^3; % LTI controller
T=feedback(P*C,1); % closed-loop uncertain system
step(usample(T,5),.1);
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Worst-Case Performance
To be robust, your control system should meet your stability and performance
requirements for all possible values of uncertain parameters. Monte Carlo
parameter sampling via usample can be used for this purpose as shown in
“System with Uncertain Parameters” on page 1-5, but Monte Carlo methods
are inherently hit or miss. With Monte Carlo methods, you might need to
take an impossibly large number of samples before you hit upon or near a
worst-case parameter combination.

Robust Control Toolbox software gives you a powerful assortment of
robustness analysis commands that let you directly calculate upper and lower
bounds on worst-case performance without random sampling.

Worst-Case Robustness Analysis Commands

loopmargin Comprehensive analysis of feedback loop

loopsens Sensitivity functions of feedback loop

ncfmargin Normalized coprime stability margin of feedback
loop

robustperf Robust performance of uncertain systems

robuststab Stability margins of uncertain systems

wcgain Worst-case gain of an uncertain system

wcmargin Worst-case gain/phase margins for feedback loop

wcsens Worst-case sensitivity functions of feedback loop
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Worst-Case Performance of Uncertain System
This example shows how to calculate the worst-case performance of the
closed-loop system described in “System with Uncertain Parameters” on page
1-5. The following commands construct that system.

m1 = ureal('m1',1,'percent',20);
m2 = ureal('m2',1,'percent',20);
k = ureal('k',1,'percent',20);

s = zpk('s');
G1 = ss(1/s^2)/m1;
G2 = ss(1/s^2)/m2;

F = [0;G1]*[1 -1]+[1;-1]*[0,G2];
P = lft(F,k);

C = 100*ss((s+1)/(.001*s+1))^3;

T = feedback(P*C,1); % Closed-loop uncertain system

This uncertain state-space model T has three uncertain parameters, k, m1,
and m2, each equal to 1±20% uncertain variation. To analyze whether the
closed-loop system T is robustly stable for all combinations of values for these
three parameters, you can execute the commands:

[StabilityMargin,Udestab,REPORT] = robuststab(T);
REPORT

REPORT =

Uncertain system is robustly stable to modeled uncertainty.
-- It can tolerate up to 301% of the modeled uncertainty.
-- A destabilizing combination of 500% of the modeled uncertainty was foun
-- This combination causes an instability at 1.58e+03 rad/seconds.
-- Sensitivity with respect to the uncertain elements are:

'k' is 20%. Increasing 'k' by 25% leads to a 5% decrease in the margi
'm1' is 60%. Increasing 'm1' by 25% leads to a 15% decrease in the ma
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Worst-Case Performance of Uncertain System

'm2' is 58%. Increasing 'm2' by 25% leads to a 14% decrease in the ma

The report tells you that the control system is robust for all parameter
variations in the ±20% range, and that the smallest destabilizing combination
of real variations in the values k, m1, and m2 has sizes somewhere between
301% and 500% greater than ±20%, i.e., between ±62.2% and ±100%. The
value Udestab returns an estimate of the 500% destabilizing parameter
variation combination:

Udestab

Udestab =

k: 1.1322e-06
m1: 6.7521e-04
m2: 1.9380e-06

You have a comfortable safety margin of between 311% to 500% larger
than the anticipated ±20% parameter variations before the closed loop
goes unstable. But how much can closed-loop performance deteriorate for
parameter variations constrained to lie strictly within the anticipated ±20%
range? The following code computes worst-case peak gain of T, and estimates
the frequency and parameter values at which the peak gain occurs:

[PeakGain,Uwc] = wcgain(T);
Twc = usubs(T,Uwc); % Worst case closed-loop system T
Trand = usample(T,4); % 4 random samples of uncertain system T
bodemag(Twc,'r',Trand,'b-.',{.5,50});
legend('T_{wc} - worst-case','T_{rand} - random samples',...

'Location','SouthWest');
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Loop-Shaping Controller Design
One of the most powerful yet simple controller synthesis tools is loopsyn.
Given an LTI plant, you specify the shape of the open-loop systems frequency
response plot that you want, then loopsyn computes a stabilizing controller
that best approximates your specified loop shape.

For example, consider the 2-by-2 NASA HiMAT aircraft model (Safonov,
Laub, and Hartmann [8]) depicted in the following figure. The control
variables are elevon and canard actuators (δe and δc). The output variables
are angle of attack (α) and attitude angle (θ). The model has six states:
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where xe and xδ are elevator and canard actuator states.
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Aircraft Configuration and Vertical Plane Geometry

You can enter the state-space matrices for this model with the following code:

ag =[ -2.2567e-02 -3.6617e+01 -1.8897e+01 -3.2090e+01 3.2509e+00 -7.6
9.2572e-05 -1.8997e+00 9.8312e-01 -7.2562e-04 -1.7080e-01 -4.9
1.2338e-02 1.1720e+01 -2.6316e+00 8.7582e-04 -3.1604e+01 2.2
0 0 1.0000e+00 0 0 0;
0 0 0 0 -3.0000e+01 0;
0 0 0 0 0 -3.0000e+01];

bg = [ 0 0;
0 0;
0 0;
0 0;
30 0;
0 30];

cg = [ 0 1 0 0 0 0;
0 0 0 1 0 0];
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dg = [ 0 0;
0 0];

G = ss(ag,bg,cg,dg);
% NASA HiMAT model G(s)

To design a controller to shape the frequency response (sigma) plot so that the
system has approximately a bandwidth of 10 rad/s, you can set as your target
desired loop shape Gd(s)=10/s, then use loopsyn(G,Gd) to find a loop-shaping
controller for G that optimally matches the desired loop shape Gd by typing:

s = zpk('s');
w0 = 10;
Gd = w0/(s+.001);
[K,CL,GAM] = loopsyn(G,Gd); % Design a loop-shaping controller K

% Plot the results
sigma(G*K,'r',Gd,'k-.',Gd/GAM,'k:',Gd*GAM,'k:',{.1,30})
legend('Achieved Loop Shape','Target Loop Shape','Gd/GAM','Gd*GAM')
figure
T = feedback(G*K,eye(2));
sigma(T,ss(GAM),'r*',{.1,30});
legend('Closed loop','GAM')
grid
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The value of γ= GAM returned is an indicator of the accuracy to which the
optimal loop shape matches your desired loop shape and is an upper bound
on the resonant peak magnitude of the closed-loop transfer function T =
feedback(G*K,eye(2)). In this case, γ = 1.6024 = 4 dB, as the singular value
plots show. The plots also show that the achieved loop shape matches the
desired target Gd to within about γ dB.

Aircraft Configuration and Vertical Plane Geometry
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Model Reduction and Approximation
Complex models are not always required for good control. Unfortunately,
however, optimization methods (including methods based on H∞, H2, and
µ-synthesis optimal control theory) generally tend to produce controllers
with at least as many states as the plant model. For this reason, Robust
Control Toolbox software offers you an assortment of model-order reduction
commands that help you to find less complex low-order approximations to
plant and controller models.

Model Reduction Commands

reduce Main interface to model approximation algorithms

balancmr Balanced truncation model reduction

bstmr Balanced stochastic truncation model reduction

hankelmr Optimal Hankel norm model approximations

modreal State-space modal truncation/realization

ncfmr Balanced normalized coprime factor model reduction

schurmr Schur balanced truncation model reduction

slowfast State-space slow-fast decomposition

stabsep State-space stable/antistable decomposition

imp2ss Impulse response to state-space approximation

Among the most important types of model reduction methods are minimize
bounds methods on additive, multiplicative, and normalized coprime factor
(NCF) model error. You can access all three of these methods using the
command reduce.
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LMI Solvers
At the core of many emergent robust control analysis and synthesis routines
are powerful general-purpose functions for solving a class of convex nonlinear
programming problems known as linear matrix inequalities. The LMI
capabilities are invoked by Robust Control Toolbox software functions
that evaluate worst-case performance, as well as functions like hinfsyn
and h2hinfsyn. Some of the main functions that help you access the LMI
capabilities of the toolbox are shown in the following table.

Specification of LMIs

lmiedit GUI for LMI specification

setlmis Initialize the LMI description

lmivar Define a new matrix variable

lmiterm Specify the term content of an LMI

newlmi Attach an identifying tag to new LMIs

getlmis Get the internal description of the LMI system

LMI Solvers

feasp Test feasibility of a system of LMIs

gevp Minimize generalized eigenvalue with LMI constraints

mincx Minimize a linear objective with LMI constraints

dec2mat Convert output of the solvers to values of matrix
variables

Evaluation of LMIs/Validation of Results

evallmi Evaluate for given values of the decision variables

showlmi Return the left and right sides of an evaluated LMI
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Extends Control System Toolbox Capabilities
Robust Control Toolbox software is designed to work with Control System
Toolbox software. Robust Control Toolbox software extends the capabilities
of Control System Toolbox software and leverages the LTI and plotting
capabilities of Control System Toolbox software. The major analysis and
synthesis commands in Robust Control Toolbox software accept LTI object
inputs, e.g., LTI state-space systems produced by commands such as:

G=tf(1,[1 2 3])
G=ss([-1 0; 0 -1], [1;1],[1 1],3)

The uncertain system (USS) objects in Robust Control Toolbox software
generalize the Control System Toolbox LTI SS objects and help ease the
task of analyzing and plotting uncertain systems. You can do many of
the same algebraic operations on uncertain systems that are possible for
LTI objects (multiply, add, invert), and Robust Control Toolbox software
provides USS uncertain system extensions of Control System Toolbox software
interconnection and plotting functions like feedback, lft, and bode.
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2 Multivariable Loop Shaping

Tradeoff Between Performance and Robustness
When the plant modeling uncertainty is not too big, you can design high-gain,
high-performance feedback controllers. High loop gains significantly larger
than 1 in magnitude can attenuate the effects of plant model uncertainty
and reduce the overall sensitivity of the system to plant noise. But if your
plant model uncertainty is so large that you do not even know the sign of
your plant gain, then you cannot use large feedback gains without the risk
that the system will become unstable. Thus, plant model uncertainty can
be a fundamental limiting factor in determining what can be achieved with
feedback.

Multiplicative Uncertainty: Given an approximate model of the plant G0
of a plant G, the multiplicative uncertainty ΔM of the model G0 is defined

as ΔM G G G= −( )−
0

1
0

or, equivalently,

G I GM= +( )Δ 0.

Plant model uncertainty arises from many sources. There might be
small unmodeled time delays or stray electrical capacitance. Imprecisely
understood actuator time constants or, in mechanical systems, high-frequency
torsional bending modes and similar effects can be responsible for plant
model uncertainty. These types of uncertainty are relatively small at lower
frequencies and typically increase at higher frequencies.

In the case of single-input/single-output (SISO) plants, the frequency at
which there are uncertain variations in your plant of size |ΔM|=2 marks
a critical threshold beyond which there is insufficient information about
the plant to reliably design a feedback controller. With such a 200% model
uncertainty, the model provides no indication of the phase angle of the true
plant, which means that the only way you can reliably stabilize your plant is
to ensure that the loop gain is less than 1. Allowing for an additional factor
of 2 margin for error, your control system bandwidth is essentially limited
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Tradeoff Between Performance and Robustness

to the frequency range over which your multiplicative plant uncertainty ΔM
has gain magnitude |ΔM|<1.

2-3



2 Multivariable Loop Shaping

Norms and Singular Values
For MIMO systems the transfer functions are matrices, and relevant
measures of gain are determined by singular values, H∞, and H2 norms, which
are defined as follows:

H2 and H• Norms The H2-norm is the energy of the impulse response
of plant G. The H∞-norm is the peak gain of G across all frequencies and all
input directions.

Another important concept is the notion of singular values.

Singular Values: The singular values of a rank r matrix A Cm n∈ × , denoted

σi, are the nonnegative square roots of the eigenvalues of A A* ordered such
that σ1 ≥ σ2 ≥ ... ≥σp > 0, p ≤ min{m, n}.

If r < p then there are p – r zero singular values, i.e., σr+1 = σr+2 = ... =σp = 0.

The greatest singular value σ1 is sometimes denoted

 A( ) = 1.

When A is a square n-by-n matrix, then the nth singular value (i.e., the least
singular value) is denoted

 A n( ) .

Properties of Singular Values
Some useful properties of singular values are:
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∈

∈
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These properties are especially important because they establish that the
greatest and least singular values of a matrix A are the maximal and minimal
"gains" of the matrix as the input vector x varies over all possible directions.

For stable continuous-time LTI systems G(s), the H2-norm and the H∞-norms
are defined terms of the frequency-dependent singular values of G(jω):

H2-norm:

G G j di
i

p

2
2

1

1
2

  ⎡
⎣⎢

⎤
⎦⎥

( )( )( )
=

−∞

∞ ∑∫

H∞-norm:

G G j2 sup


 ( )( )

where sup denotes the least upper bound.
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2 Multivariable Loop Shaping

Typical Loop Shapes, S and T Design
Consider the multivariable feedback control system shown in the following
figure. In order to quantify the multivariable stability margins and
performance of such systems, you can use the singular values of the closed-loop
transfer function matrices from r to each of the three outputs e, u, and y, viz.

S s I L s

R s K s I L s

T s L s I L s

def

def

def

( ) = + ( )( )

( ) = ( ) + ( )( )

( ) = ( ) + ( )

−

−

1

1

(( ) = − ( )−1
I S s

where the L(s) is the loop transfer function matrix

L s G s K s( ) = ( ) ( ). (2-1)

Block Diagram of the Multivariable Feedback Control System

The two matrices S(s) and T(s) are known as the sensitivity function and
complementary sensitivity function, respectively. The matrix R(s) has no
common name. The singular value Bode plots of each of the three transfer
function matrices S(s), R(s), and T(s) play an important role in robust
multivariable control system design. The singular values of the loop transfer
function matrix L(s) are important because L(s) determines the matrices
S(s) and T(s).
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Typical Loop Shapes, S and T Design

Robustness in Terms of Singular Values
The singular values of S(jω) determine the disturbance attenuation, because
S(s) is in fact the closed-loop transfer function from disturbance d to plant
output y— see Block Diagram of the Multivariable Feedback Control System
on page 2-6. Thus a disturbance attenuation performance specification can
be written as

  S j W j( )( ) ≤ ( )−
1

1
(2-2)

where W j1
1− ( ) is the desired disturbance attenuation factor. Allowing

W j1 ( ) to depend on frequency ω enables you to specify a different
attenuation factor for each frequency ω.

The singular value Bode plots of R(s) and of T(s) are used to measure
the stability margins of multivariable feedback designs in the face of
additive plant perturbations ΔA and multiplicative plant perturbations ΔM,
respectively. See the following figure.

Consider how the singular value Bode plot of complementary sensitivity T(s)
determines the stability margin for multiplicative perturbations ΔM. The
multiplicative stability margin is, by definition, the "size" of the smallest
stable ΔM(s) that destabilizes the system in the figure below when ΔA = 0.
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2 Multivariable Loop Shaping

Additive/Multiplicative Uncertainty

Taking  ΔM j( )( ) to be the definition of the "size" of ΔM(jω), you have the
following useful characterization of "multiplicative" stability robustness:

Multiplicative Robustness: The size of the smallest destabilizing
multiplicative uncertainty ΔM(s) is:

 
 

ΔM j
T j

( )( ) =
( )( )
1

.

The smaller is  T j( )( ) , the greater will be the size of the smallest
destabilizing multiplicative perturbation, and hence the greater will be the
stability margin.

A similar result is available for relating the stability margin in the face of

additive plant perturbations ΔA(s) to R(s) if you take  Δ A j( )( ) to be the
definition of the "size" of ΔA(jω) at frequency ω.
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Additive Robustness: The size of the smallest destabilizing additive
uncertainty ΔA is:

 
 

Δ A j
R j

( )( ) =
( )( )
1

.

As a consequence of robustness theorems 1 and 2, it is common to specify the
stability margins of control systems via singular value inequalities such as

  R j W j{ }( ) ≤ ( )−
2

1
(2-3)

  T j W j{ }( ) ≤ ( )−
3

1
(2-4)

where |W2(jω)| and |W3(jω)| are the respective sizes of the largest
anticipated additive and multiplicative plant perturbations.

It is common practice to lump the effects of all plant uncertainty into a
single fictitious multiplicative perturbation ΔM, so that the control design
requirements can be written

1
1 3

1

 
   

i
iS j

W j T j W j
( )( ) ≥ ( ) [ ]( ) ≤ ( )−;

as shown in Singular Value Specifications on L, S, and T on page 2-12.

It is interesting to note that in the upper half of the figure (above the 0 dB
line),

 
 

L j
S j

( )( ) ≈
( )( )
1

while in the lower half of Singular Value Specifications on L, S, and T on page
2-12 (below the 0 dB line),
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2 Multivariable Loop Shaping

   L j T j( )( ) ≈ ( )( ).

This results from the fact that

S s I L s L s
def

( ) = + ( )( ) ≈ ( )− −1 1

if  L s( )( ) 1 , and

T s L s I L s L s
def

( ) = ( ) + ( )( ) ≈ ( )−1

if  L s( )( ) 1 .
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2 Multivariable Loop Shaping

Singular Value Specifications on L, S, and T

Thus, it is not uncommon to see specifications on disturbance attenuation
and multiplicative stability margin expressed directly in terms of forbidden
regions for the Bode plots of σi(L(jω)) as "singular value loop shaping"
requirements, either as specified upper/lower bounds or as a target desired
loop shape — see the preceding figure.

Guaranteed Gain/Phase Margins in MIMO Systems
For those who are more comfortable with classical single-loop concepts, there
are the important connections between the multiplicative stability margins

predicted by  T( ) and those predicted by classical M-circles, as found on the
Nichols chart. Indeed in the single-input/single-output case,
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T j
L j

L j
( )( ) =

( )
+ ( )1

which is precisely the quantity you obtain from Nichols chart M-circles. Thus,

T ∞ is a multiloop generalization of the closed-loop resonant peak magnitude
which, as classical control experts will recognize, is closely related to the
damping ratio of the dominant closed-loop poles. Also, it turns out that you

can relate T ∞ , S ∞ to the classical gain margin GM and phase margin θM in
each feedback loop of the multivariable feedback system of Block Diagram of
the Multivariable Feedback Control System on page 2-6 via the formulas:

G
T

G

S

T

T

M

M

M

M

≥ +

≥ +
−

≥
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

≥
⎛

⎝
⎜⎜

⎞

∞

∞

−

∞

−

∞

1
1

1
1

1
1

2
1

2

2
1

2

1

1





sin

sin
⎠⎠
⎟⎟.

(See [6].) These formulas are valid provided S ∞ and T ∞ are larger than 1,
as is normally the case. The margins apply even when the gain perturbations
or phase perturbations occur simultaneously in several feedback channels.

The infinity norms of S and T also yield gain reduction tolerances. The gain
reduction tolerance gm is defined to be the minimal amount by which the gains
in each loop would have to be decreased in order to destabilize the system.
Upper bounds on gm are as follows:

2-13



2 Multivariable Loop Shaping

g
T

g

S

M

M

≤ −

≤
+

∞

∞

1
1

1

1
1

.
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Using LOOPSYN to Do H-Infinity Loop Shaping

Using LOOPSYN to Do H-Infinity Loop Shaping
The command loopsyn lets you design a stabilizing feedback controller to
optimally shape the open loop frequency response of a MIMO feedback control
system to match as closely as possible a desired loop shape Gd — see the
preceding figure. The basic syntax of the loopsyn loop-shaping controller
synthesis command is:

K = loopsyn(G,Gd)

Here G is the LTI transfer function matrix of a MIMO plant model, Gd is
the target desired loop shape for the loop transfer function L=G*K, and K is
the optimal loop-shaping controller. The LTI controller K has the property
that it shapes the loop L=G*K so that it matches the frequency response of Gd
as closely as possible, subject to the constraint that the compensator must
stabilize the plant model G.

2-15
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Loop-Shaping Control Design of Aircraft Model
To see how the loopsyn command works in practice to address robustness
and performance tradeoffs, consider again the NASA HiMAT aircraft model
taken from the paper of Safonov, Laub, and Hartmann [8]. The longitudinal
dynamics of the HiMAT aircraft trimmed at 25000 ft and 0.9 Mach are
unstable and have two right-half-plane phugoid modes. The linear model
has state-space realization G(s) = C(Is – A)–1B with six states, with the first
four states representing angle of attack (α) and attitude angle (θ) and their
rates of change, and the last two representing elevon and canard control
actuator dynamics — see Aircraft Configuration and Vertical Plane Geometry
on page 2-17.

ag =[
-2.2567e-02 -3.6617e+01 -1.8897e+01 -3.2090e+01 3.2509e+00 -7.6257e-0
9.2572e-05 -1.8997e+00 9.8312e-01 -7.2562e-04 -1.7080e-01 -4.9652e-03
1.2338e-02 1.1720e+01 -2.6316e+00 8.7582e-04 -3.1604e+01 2.2396e+01
0 0 1.0000e+00 0 0 0;
0 0 0 0 -3.0000e+01 0;
0 0 0 0 0 -3.0000e+01];
bg = [0 0;

0 0;
0 0;
0 0;

30 0;
0 30];

cg = [0 1 0 0 0 0;
0 0 0 1 0 0];

dg = [0 0;
0 0];

G = ss(ag,bg,cg,dg);

The control variables are elevon and canard actuators (δe and δc). The output
variables are angle of attack (α) and attitude angle (θ).
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Aircraft Configuration and Vertical Plane Geometry

This model is good at frequencies below 100 rad/s with less than 30%
variation between the true aircraft and the model in this frequency range.
However as noted in [8], it does not reliably capture very high-frequency
behaviors, because it was derived by treating the aircraft as a rigid body and
neglecting lightly damped fuselage bending modes that occur at somewhere
between 100 and 300 rad/s. These unmodeled bending modes might cause as
much as 20 dB deviation (i.e., 1000%) between the frequency response of
the model and the actual aircraft for frequency ω > 100 rad/s. Other effects
like control actuator time delays and fuel sloshing also contribute to model
inaccuracy at even higher frequencies, but the dominant unmodeled effects
are the fuselage bending modes. You can think of these unmodeled bending
modes as multiplicative uncertainty of size 20 dB, and design your controller
using loopsyn, by making sure that the loop has gain less than –20 dB at, and
beyond, the frequency ω > 100 rad/s.
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Design Specifications
The singular value design specifications are

• Robustness Spec.: –20 dB/decade roll-off slope and –20 dB loop gain
at 100 rad/s

• Performance Spec.: Minimize the sensitivity function as much as
possible.

Both specs can be accommodated by taking as the desired loop shape

Gd(s)=8/s

MATLAB Commands for a LOOPSYN Design

s = zpk('s'); % Laplace variable s
Gd = 8/s; % desired loop shape
% Compute the optimal loop shaping controller K
[K,CL,GAM]=loopsyn(G,Gd);
% Compute the loop L, sensitivity S and complementary sensitivity T:
L = G*K;
I = eye(size(L));
S = feedback(I,L); % S=inv(I+L);
T = I-S;
% Plot the results:
% step response plots
step(T);title('\alpha and \theta command step responses');
% frequency response plots
figure;
sigma(L,'r--',Gd,'k-.',Gd/GAM,'k:',Gd*GAM,'k:',{.1,100})
legend('\sigma(L) loopshape',...
'\sigma(Gd) desired loop',...
'\sigma(Gd) \pm GAM, dB');

figure;
sigma(T,I+L,'r--',{.1,100})
legend('\sigma(T) robustness','1/\sigma(S) performance')
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The number ±GAM, dB (i.e., 20log10(GAM)) tells you the accuracy with which
your loopsyn control design matches the target desired loop:

  

  

GK

GK
c

c

( ) ≥ − <

( ) ≥ + >

, , , ( )

, , , ( ).

db G db GAM db 

db G db GAM db 
d

d
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Fine-Tuning the LOOPSYN Target Loop Shape Gd to Meet
Design Goals

If your first attempt at loopsyn design does not achieve everything you
wanted, you will need to readjust your target desired loop shape Gd. Here are
some basic design tradeoffs to consider:

• Stability Robustness. Your target loop Gd should have low gain (as small
as possible) at high frequencies where typically your plant model is so poor
that its phase angle is completely inaccurate, with errors approaching
±180° or more.

• Performance. Your Gd loop should have high gain (as great as possible)
at frequencies where your model is good, in order to ensure good control
accuracy and good disturbance attenuation.

• Crossover and Roll-Off. Your desired loop shape Gd should have its 0 dB
crossover frequency (denoted ωc) between the above two frequency ranges,
and below the crossover frequency ωc it should roll off with a negative slope
of between –20 and –40 dB/decade, which helps to keep phase lag to less
than –180° inside the control loop bandwidth (0 < ω < ωc).

Other considerations that might affect your choice of Gd are the
right-half-plane poles and zeros of the plant G, which impose ffundamental
limits on your 0 dB crossover frequency ωc [12]. For instance, your 0 dB
crossover ωc must be greater than the magnitude of any plant right-half-plane
poles and less than the magnitude of any right-half-plane zeros.

max min .
Re Rep

i c
z

i
i i

p z
( )> ( )>

< <
0 0



If you do not take care to choose a target loop shape Gd that conforms to
these fundamental constraints, then loopsyn will still compute the optimal
loop-shaping controller K for your Gd, but you should expect that the optimal
loop L=G*K will have a poor fit to the target loop shape Gd, and consequently it
might be impossible to meet your performance goals.
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Mixed-Sensitivity Loop Shaping
A popular alternative approach to loopsyn loop shaping isH∞mixed-sensitivity
loop shaping, which is implemented by the Robust Control Toolbox software
command:

K=mixsyn(G,W1,[],W3)

With mixsyn controller synthesis, your performance and stability robustness
specifications equations (2-2) and (2-4) are combined into a single infinity
norm specification of the form

Ty u1 1
1

∞
≤

where (see MIXSYN H∞ Mixed-Sensitivity Loop Shaping Ty1 u1 on page 2-24):

T
W S
W Ty u

def

1 1

1

3
=

⎡

⎣
⎢

⎤

⎦
⎥ .

The term Ty u1 1 ∞
is called a mixed-sensitivity cost function because it

penalizes both sensitivity S(s) and complementary sensitivity T(s). Loop
shaping is achieved when you choose W1 to have the target loop shape for
frequencies ω < ωc, and you choose 1/W3 to be the target for ω > ωc. In choosing
design specifications W1 and W3 for a mixsyn controller design, you need to
ensure that your 0 dB crossover frequency for the Bode plot of W1 is below the
0 dB crossover frequency of 1/W3, as shown in Singular Value Specifications
on L, S, and T on page 2-12, so that there is a gap for the desired loop shape
Gd to pass between the performance bound W1 and your robustness bound

W3
1− . Otherwise, your performance and robustness requirements will not

be achievable.
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MIXSYN H• Mixed-Sensitivity Loop Shaping Ty1 u1
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Mixed-Sensitivity Loop-Shaping Controller Design
To do a mixsyn H∞ mixed-sensitivity synthesis design on the HiMAT model,
start with the plant model G discussed in “Mixed-Sensitivity Loop-Shaping
Controller Design” on page 2-25. The following code recreates that plant
model.

ag =[ -2.2567e-02 -3.6617e+01 -1.8897e+01 -3.2090e+01 3.2509e+00 -7.62
9.2572e-05 -1.8997e+00 9.8312e-01 -7.2562e-04 -1.7080e-01 -4.96
1.2338e-02 1.1720e+01 -2.6316e+00 8.7582e-04 -3.1604e+01 2.23
0 0 1.0000e+00 0 0 0;
0 0 0 0 -3.0000e+01 0;
0 0 0 0 0 -3.0000e+01];

bg = [ 0 0;
0 0;
0 0;
0 0;
30 0;
0 30];

cg = [ 0 1 0 0 0 0;
0 0 0 1 0 0];

dg = [ 0 0;
0 0];

G = ss(ag,bg,cg,dg);

Set up the performance and robustness bounds, W1 and W3.

s = zpk('s'); % Laplace variable s
MS = 2; AS = .03; WS = 5;
W1 = (s/MS+WS)/(s+AS*WS);
MT = 2; AT = .05; WT = 20;
W3 = (s+WT/MT)/(AT*s+WT);

Compute the H-infinity mixed-sensitivity optimal controller K1 using mixsyn.

[K1,CL1,GAM1] = mixsyn(G,W1,[],W3);

Next compute responses of the closed-loop system. Compute the loop L1,
sensitivity S1, and complementary sensitivity T1.

L1 = G*K1;
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I = eye(size(L1));
S1 = feedback(I,L1); % S=inv(I+L1);
T1 = I-S1;

Finally, plot time-domain and frequency-domain responses.

step(T1,1.5);
title('\alpha and \theta command step responses');

figure;
sigma(I+L1,'--',T1,':',L1,'r--',W1/GAM1,'k--',GAM1/W3,'k-.',{.1,100})
legend('1/\sigma(S) performance','\sigma(T) robustness','\sigma(L) loopshap

'\sigma(W1) performance bound','\sigma(1/W3) robustness bound')
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3 Model Reduction for Robust Control

Why Reduce Model Order?
In the design of robust controllers for complicated systems, model reduction
fits several goals:

1 To simplify the best available model in light of the purpose for which the
model is to be used—namely, to design a control system to meet certain
specifications.

2 To speed up the simulation process in the design validation stage, using a
smaller size model with most of the important system dynamics preserved.

3 Finally, if a modern control method such as LQG or H∞ is used for which
the complexity of the control law is not explicitly constrained, the order of
the resultant controller is likely to be considerably greater than is truly
needed. A good model reduction algorithm applied to the control law can
sometimes significantly reduce control law complexity with little change in
control system performance.

Model reduction routines in this toolbox can be put into two categories:

• Additive error method— The reduced-order model has an additive error
bounded by an error criterion.

• Multiplicative error method — The reduced-order model has a
multiplicative or relative error bounded by an error criterion.

The error is measured in terms of peak gain across frequency (H∞ norm), and
the error bounds are a function of the neglected Hankel singular values.
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Hankel Singular Values
In control theory, eigenvalues define a system stability, whereas Hankel
singular values define the “energy” of each state in the system. Keeping
larger energy states of a system preserves most of its characteristics in terms
of stability, frequency, and time responses. Model reduction techniques
presented here are all based on the Hankel singular values of a system.
They can achieve a reduced-order model that preserves the majority of the
system characteristics.

Mathematically, given a stable state-space system (A,B,C,D), its Hankel
singular values are defined as [1]

 H i PQ= ( )

where P and Q are controllability and observability grammians satisfying

AP PA BB

A Q QA C C

T T

T T

+ = −

+ = − .

For example, generate a random 30-state system and plot its Hankel singular
values.

rng(1234,'twister');
G = rss(30,4,3);
hankelsv(G)
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The plot shows shows that system G has most of its “energy” stored in states 1
through 15 or so. Later, you will see how to use model reduction routines to
keep a 15-state reduced model that preserves most of its dynamic response.

Related
Examples

• “Approximate Plant Model by Additive Error Methods” on page 3-7
• “Approximate Plant Model by Multiplicative Error Method” on page 3-11

Concepts • “Model Reduction Techniques” on page 3-5
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Model Reduction Techniques
Robust Control Toolbox software offers several algorithms for model
approximation and order reduction. These algorithms let you control the
absolute or relative approximation error, and are all based on the Hankel
singular values of the system.

Robust control theory quantifies a system uncertainty as either additive or
multiplicative types. These model reduction routines are also categorized
into two groups: additive error and multiplicative error types. In other
words, some model reduction routines produce a reduced-order model Gred

of the original model G with a bound on the error G Gred− ∞ , the peak gain
across frequency. Others produce a reduced-order model with a bound on

the relative error G G Gred−
∞

−( )1 .

These theoretical bounds are based on the “tails” of the Hankel singular
values of the model, i.e.,

Additive Error Bound

G Gred i
k

n
− ≤∞

+
∑2

1


(3-1)
where σi are denoted the ith Hankel singular value of the original system G.

Multiplicative (Relative) Error Bound

G G Gred i i i
k

n
−

∞ +
−( ) ≤ + + +( )⎛

⎝⎜
⎞
⎠⎟

−∏1 2

1

1 2 1 1  
(3-2)

where σi are denoted the ith Hankel singular value of the phase matrix of the
model G (see the bstmr reference page).
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Top-Level Model Reduction Command

Method Description

reduce Main interface to model approximation algorithms

Normalized Coprime Balanced Model Reduction Command

Method Description

ncfmr Normalized coprime balanced truncation

Additive Error Model Reduction Commands

Method Description

balancmr Square-root balanced model truncation

schurmr Schur balanced model truncation

hankelmr Hankel minimum degree approximation

Multiplicative Error Model Reduction Command

Method Description

bstmr Balanced stochastic truncation

Additional Model Reduction Tools

Method Description

modreal Modal realization and truncation

slowfast Slow and fast state decomposition

stabsep Stable and antistable state projection
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Approximate Plant Model by Additive Error Methods
Given a system G in LTI form, the following commands reduce the system
to any desired order you specify. The judgment call is based on its Hankel
singular values.

rng(1234,'twister');
G = rss(30,4,3); % random 30-state model
% balanced truncation to models with sizes 12:16
[G1,info1] = balancmr(G,12:16);
% Schur balanced truncation by specifying `MaxError'
[G2,info2] = schurmr(G,'MaxError',[1,0.8,0.5,0.2]);
sigma(G,'b-',G1,'r--',G2,'g-.')
legend('G','G1','G2')
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The plot compares the original model G with the reduced models G1 and G2.

To determine whether the theoretical error bound is satisfied,

norm(G-G1(:,:,1),'inf')
info1.ErrorBound(1)

ans =
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1.2556

ans =

6.2433

Or, plot the model error vs. error bound via the following commands:

[sv,w] = sigma(G-G1(:,:,1));
loglog(w,sv,w,info1.ErrorBound(1)*ones(size(w)))
xlabel('rad/sec');ylabel('SV');
title('Error Bound and Model Error')

3-9



3 Model Reduction for Robust Control

3-10



Approximate Plant Model by Multiplicative Error Method

Approximate Plant Model by Multiplicative Error Method
In most cases, the multiplicative error model reduction method bstmr tends
to bound the relative error between the original and reduced-order models
across the frequency range of interest, hence producing a more accurate
reduced-order model than the additive error methods. This characteristic is
obvious in system models with low damped poles.

The following commands illustrate the significance of a multiplicative error
model reduction method as compared to any additive error type. Clearly, the
phase-matching algorithm using bstmr provides a better fit in the Bode plot.

rng(123456);
G = rss(30,1,1); % random 30-state model

[gr,infor] = reduce(G,'Algorithm','balance','order',7);
[gs,infos] = reduce(G,'Algorithm','bst','order',7);

figure(1)
bode(G,'b-',gr,'r--')
title('Additive Error Method')
legend('Original','Reduced')

figure(2)
bode(G,'b-',gs,'r--')
title('Relative Error Method')
legend('Original','Reduced')
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Therefore, for some systems with low damped poles or zeros, the balanced
stochastic method (bstmr) produces a better reduced-order model fit in those
frequency ranges to make multiplicative error small. Whereas additive error
methods such as balancmr, schurmr, or hankelmr only care about minimizing
the overall "absolute" peak error, they can produce a reduced-order model
missing those low damped poles/zeros frequency regions.

See Also bstmr | balancmr | schurmr | hankelmr
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Using Modal Algorithms
Rigid Body Dynamics

In many cases, a model’s -axis poles are important to keep after model
reduction, e.g., rigid body dynamics of a flexible structure plant or integrators
of a controller. A unique routine, modreal, serves the purpose nicely.

modreal puts a system into its modal form, with eigenvalues appearing on
the diagonal of its A-matrix. Real eigenvalues appear in 1-by-1 blocks, and
complex eigenvalues appear in 2-by-2 real blocks. All the blocks are ordered
in ascending order, based on their eigenvalue magnitudes, by default, or
descending order, based on their real parts. Therefore, specifying the number
of -axis poles splits the model into two systems with one containing only

-axis dynamics, the other containing the remaining dynamics.

rng(5678,'twister');
G = rss(30,1,1); % random 30-state model
[Gjw,G2] = modreal(G,1); % only one rigid body dynamics
G2.d = Gjw.d; Gjw.d = 0; % put DC gain of G into G2
subplot(211);sigma(Gjw);ylabel('Rigid Body')
subplot(212);sigma(G2);ylabel('Nonrigid Body')
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Further model reduction can be done on G2 without any numerical difficulty.
After G2 is further reduced to Gred, the final approximation of the model is
simply Gjw+Gred.

This process of splitting -axis poles has been built in and automated in
all the model reduction routines balancmr, schurmr, hankelmr, bstmr, and
hankelsv, so that users need not worry about splitting the model.

Examine the Hankel singular value plot.
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hankelsv(G)

Calculate an eighth-order reduced model.

[gr,info] = reduce(G,8);
figure
bode(G,'b-',gr,'r--')
legend('Original','Reduced');
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The default algorithm balancmr of reduce has done a great job of
approximating a 30-state model with just eight states. Again, the rigid body
dynamics are preserved for further controller design.

See Also modreal | balancmr | schurmr | hankelmr | bstmr | hankelsv
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Reducing Large-Scale Models
For some really large size problems (states > 200), modreal turns out
to be the only way to start the model reduction process. Because of the
size and numerical properties associated with those large size, and low
damped dynamics, most Hankel based routines can fail to produce a good
reduced-order model.

modreal puts the large size dynamics into the modal form, then truncates the
dynamic model to an intermediate stage model with a comfortable size of 50
or so states. From this point on, those more sophisticated Hankel singular
value based routines can further reduce this intermediate stage model, in a
much more accurate fashion, to a smaller size for final controller design.

For a typical 240-state flexible spacecraft model in the spacecraft industry,
applying modreal and bstmr (or any other additive routines) in sequence can
reduce the original 240-state plant dynamics to a seven-state three-axis model
including rigid body dynamics. Any modern robust control design technique
mentioned in this toolbox can then be easily applied to this smaller size plant
for a controller design.
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Normalized Coprime Factor Reduction
A special model reduction routine ncfmr produces a reduced-order model
by truncating a balanced coprime set of a given model. It can directly
simplify a modern controller with integrators to a smaller size by balanced
truncation of the normalized coprime factors. It does not need modreal for
pre-/postprocessing as the other routines do. However, any integrators in the
model will not be preserved.

rng(89,'twister');
K= rss(30,4,3);
[Kred,info2] = ncfmr(K);

Again, without specifying the size of the reduced-order model, any model
reduction routine presented here will plot a Hankel singular value bar chart
and prompt you for a reduced model size. In this case, enter 15.

Then, plot the singular values of the original and reduced-order models.

sigma(K,Kred)
legend('Original (30-state)','Kred (15-state)')
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If integral control is important, previously mentioned methods (except ncfmr)
can nicely preserve the original integrator(s) in the model.

See Also ncfmr | modreal | ncfmr

3-20



Bibliography

Bibliography
[1] Glover, K., “All Optimal Hankel Norm Approximation of Linear
Multivariable Systems, and Their L∝ - Error Bounds,” Int. J. Control, Vol. 39,
No. 6, 1984, pp. 1145-1193.

[2] Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control,
Englewood Cliffs, NJ, Prentice Hall, 1996.

[3] Safonov, M.G., and Chiang, R.Y., “A Schur Method for Balanced Model
Reduction,” IEEE Trans. on Automat. Contr., Vol. 34, No. 7, July 1989,
pp. 729-733.

[4] Safonov, M.G., Chiang, R.Y., and Limebeer, D.J.N., “Optimal Hankel
Model Reduction for Nonminimal Systems,” IEEE Trans. on Automat. Contr.,
Vol. 35, No. 4, April 1990, pp. 496-502.

[5] Safonov, M.G., and Chiang, R.Y., “Model Reduction for Robust Control:
A Schur Relative Error Method,” International J. of Adaptive Control and
Signal Processing, Vol. 2, 1988, pp. 259-272.

[6] Obinata, G., and Anderson, B.D.O., Model Reduction for Control System
Design, London, Springer-Verlag, 2001.

3-21



3 Model Reduction for Robust Control

3-22



4

Robustness Analysis

• “Create Models of Uncertain Systems” on page 4-2

• “Robust Controller Design” on page 4-10

• “MIMO Robustness Analysis” on page 4-16

• “Summary of Robustness Analysis Tools” on page 4-30



4 Robustness Analysis

Create Models of Uncertain Systems
Dealing with and understanding the effects of uncertainty are important tasks
for the control engineer. Reducing the effects of some forms of uncertainty
(initial conditions, low-frequency disturbances) without catastrophically
increasing the effects of other dominant forms (sensor noise, model
uncertainty) is the primary job of the feedback control system.

Closed-loop stability is the way to deal with the (always present) uncertainty
in initial conditions or arbitrarily small disturbances.

High-gain feedback in low-frequency ranges is a way to deal with the effects
of unknown biases and disturbances acting on the process output. In this
case, you are forced to use roll-off filters in high-frequency ranges to deal with
high-frequency sensor noise in a feedback system.

Finally, notions such as gain and phase margins (and their generalizations)
help quantify the sensitivity of stability and performance in the face of model
uncertainty, which is the imprecise knowledge of how the control input
directly affects the feedback variables.

Robust Control Toolbox software has built-in features allowing you to specify
model uncertainty simply and naturally. The primary building blocks, called
uncertain elements (or uncertain Control Design Blocks) are uncertain real
parameters and uncertain linear, time-invariant objects. These can be used to
create coarse and simple or detailed and complex descriptions of the model
uncertainty present within your process models.

Once formulated, high-level system robustness tools can help you analyze the
potential degradation of stability and performance of the closed-loop system
brought on by the system model uncertainty.

Creating Uncertain Models of Dynamic Systems
The two dominant forms of model uncertainty are as follows:

• Uncertainty in parameters of the underlying differential equation models
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• Frequency-domain uncertainty, which often quantifies model uncertainty
by describing absolute or relative uncertainty in the process’s frequency
response

Using these two basic building blocks, along with conventional system
creation commands (such as ss and tf), you can easily create uncertain
system models.

Creating Uncertain Parameters
An uncertain parameter has a name (used to identify it within an uncertain
system with many uncertain parameters) and a nominal value. Being
uncertain, it also has variability, described in one of the following ways:

• An additive deviation from the nominal

• A range about the nominal

• A percentage deviation from the nominal

Create a real parameter, with name ’bw’, nominal value 5, and a percentage
uncertainty of 10%.

bw = ureal('bw',5,'Percentage',10)

bw =

Uncertain real parameter "bw" with nominal value 5 and variability [-10,1

This creates a ureal object. View its properties using the get command.

get(bw)

Name: 'bw'
NominalValue: 5

Mode: 'Percentage'
Range: [4.5000 5.5000]

PlusMinus: [-0.5000 0.5000]
Percentage: [-10 10]
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AutoSimplify: 'basic'

Note that the range of variation (Range property) and the additive deviation
from nominal (the PlusMinus property) are consistent with the Percentage
property value.

You can create state-space and transfer function models with uncertain
real coefficients using ureal objects. The result is an uncertain state-space
object, or uss. As an example, use the uncertain real parameter bw to model a
first-order system whose bandwidth is between 4.5 and 5.5 rad/s.

H = tf(1,[1/bw 1])

H =

Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 1 s
The model uncertainty consists of the following blocks:

bw: Uncertain real, nominal = 5, variability = [-10,10]%, 1 occurrences

Type "H.NominalValue" to see the nominal value, "get(H)" to see all propert

Note that the result H is an uncertain system, called a uss object. The nominal
value of H is a state-space object. Verify that the pole is at –5.

pole(H.NominalValue)

ans =

-5

Next, use bode and step to examine the behavior of H. These commands
plot the responses of the nominal system and a number of samples of the
uncertain system.

bode(H,{1e-1 1e2});
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step(H)
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While there are variations in the bandwidth and time constant of H, the
high-frequency rolls off at 20 dB/decade regardless of the value of bw. You can
capture the more complicated uncertain behavior that typically occurs at high
frequencies using the ultidyn uncertain element, which is described next.

Quantifying Unmodeled Dynamics
An informal way to describe the difference between the model of a process and
the actual process behavior is in terms of bandwidth. It is common to hear
“The model is good out to 8 radians/second.” The precise meaning is not clear,
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but it is reasonable to believe that for frequencies lower than, say, 5 rad/s,
the model is accurate, and for frequencies beyond, say, 30 rad/s, the model is
not necessarily representative of the process behavior. In the frequency range
between 5 and 30, the guaranteed accuracy of the model degrades.

The uncertain linear, time-invariant dynamics object ultidyn can be used
to model this type of knowledge. An ultidyn object represents an unknown
linear system whose only known attribute is a uniform magnitude bound
on its frequency response. When coupled with a nominal model and a
frequency-shaping filter, ultidyn objects can be used to capture uncertainty
associated with the model dynamics.

Suppose that the behavior of the system modeled by H significantly deviates
from its first-order behavior beyond 9 rad/s, for example, about 5% potential
relative error at low frequency, increasing to 1000% at high frequency where
H rolls off. In order to model frequency domain uncertainty as described above
using ultidyn objects, follow these steps:

1 Create the nominal system Gnom, using tf, ss, or zpk. Gnom itself might
already have parameter uncertainty. In this case Gnom is H, the first-order
system with an uncertain time constant.

2 Create a filter W, called the “weight,” whose magnitude represents the
relative uncertainty at each frequency. The utility makeweight is useful for
creating first-order weights with specific low- and high-frequency gains,
and specified gain crossover frequency.

3 Create an ultidyn object Delta with magnitude bound equal to 1.

The uncertain model G is formed by G = Gnom*(1+W*Delta).

If the magnitude of W represents an absolute (rather than relative)
uncertainty, use the formula G = Gnom + W*Delta instead.

The following commands carry out these steps:

bw = ureal('bw',5,'Percentage',10);
H = tf(1,[1/bw 1]);

Gnom = H;
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W = makeweight(.05,9,10);
Delta = ultidyn('Delta',[1 1]);
G = Gnom*(1+W*Delta)

G =

Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 2 s
The model uncertainty consists of the following blocks:

Delta: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences
bw: Uncertain real, nominal = 5, variability = [-10,10]%, 1 occurrences

Type "G.NominalValue" to see the nominal value, "get(G)" to see all propert

Note that the result G is also an uncertain system, with dependence on both
Delta and bw. You can use bode to make a Bode plot of 20 random samples of
G's behavior over the frequency range [0.1 100] rad/s.

bode(G,{1e-1 1e2})
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In the next section, you design and compare two feedback controllers for G.

Related
Examples

• “Robust Controller Design” on page 4-10
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Robust Controller Design
In this tutorial, design a feedback controller for G, the uncertain model
created in “Create Models of Uncertain Systems” on page 4-2. The goals of
this design are the usual ones: good steady-state tracking and disturbance
rejection properties. Because the plant model is nominally a first-order lag,
choose a PI control architecture. Given the desired closed-loop damping ratio
ξ and natural frequency ωn, the design equations for KI and KP (based on the
nominal open-loop time constant of 0.2) are

K KI
n

P
n= = −

 2

5
2

5
1, .

Follow these steps to design the controller:

1 In order to study how the uncertain behavior of G affects the achievable
closed-loop bandwidth, design two controllers, both achieving ξ=0.707, with
different ωn: 3 and 7.5 respectively.

xi = 0.707;
wn = 3;
K1 = tf([(2*xi*wn/5-1) wn*wn/5],[1 0]);
wn = 7.5;
K2 = tf([(2*xi*wn/5-1) wn*wn/5],[1 0]);

Note that the nominal closed-loop bandwidth achieved by K2 is in a region
where G has significant model uncertainty. It will not be surprising if
the model variations lead to significant degradations in the closed-loop
performance.

2 Form the closed-loop systems using feedback.

T1 = feedback(G*K1,1);
T2 = feedback(G*K2,1);

3 Plot the step responses of 20 samples of each closed-loop system.

tfinal = 3;
stepplot(T1,'b',T2,'r',tfinal)
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The step responses for T2 exhibit a faster rise time because K2 sets a higher
closed loop bandwidth. However, the model variations have a greater effect.

You can use robuststab to check the robustness of stability to the model
variations.

[stabmarg1,destabu1,report1] = robuststab(T1);
stabmarg1
[stabmarg2,destabu2,report2] = robuststab(T2);
stabmarg2
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stabmarg1 =

LowerBound: 4.0137
UpperBound: 4.0137

DestabilizingFrequency: 3.6934

stabmarg2 =

LowerBound: 1.2530
UpperBound: 1.2530

DestabilizingFrequency: 10.8831

The stabmarg variable gives lower and upper bounds on the stability margin.
A stability margin greater than 1 means the system is stable for all values
of the modeled uncertainty. A stability margin less than 1 means there are
allowable values of the uncertain elements that make the system unstable.
The report variable briefly summarizes the analysis.

report1
report2

report1 =

Uncertain system is robustly stable to modeled uncertainty.
-- It can tolerate up to 401% of the modeled uncertainty.
-- A destabilizing combination of 401% of the modeled uncertainty was foun
-- This combination causes an instability at 3.69 rad/seconds.
-- Sensitivity with respect to the uncertain elements are:

'Delta' is 100%. Increasing 'Delta' by 25% leads to a 25% decrease in
'bw' is 21%. Increasing 'bw' by 25% leads to a 5% decrease in the mar

report2 =

Uncertain system is robustly stable to modeled uncertainty.
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-- It can tolerate up to 125% of the modeled uncertainty.
-- A destabilizing combination of 125% of the modeled uncertainty was foun
-- This combination causes an instability at 10.9 rad/seconds.
-- Sensitivity with respect to the uncertain elements are:

'Delta' is 100%. Increasing 'Delta' by 25% leads to a 25% decrease in
'bw' is 11%. Increasing 'bw' by 25% leads to a 3% decrease in the mar

While both systems are stable for all variations, their performance is clearly
affected to different degrees. To determine how the uncertainty affects
closed-loop performance, you can use wcgain to compute the worst-case
effect of the uncertainty on the peak magnitude of the closed-loop sensitivity
(S=1/(1+GK)) function. This peak gain is typically correlated with the amount
of overshoot in a step response.

To do this, form the closed-loop sensitivity functions and call wcgain.

S1 = feedback(1,G*K1);
S2 = feedback(1,G*K2);

[maxgain1,wcu1] = wcgain(S1);
maxgain1

[maxgain2,wcu2] = wcgain(S2);
maxgain2

maxgain1 =

LowerBound: 1.8831
UpperBound: 1.8835

CriticalFrequency: 3.2651

maxgain2 =

LowerBound: 4.6037
UpperBound: 4.6120

CriticalFrequency: 11.1286
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The maxgain variable gives lower and upper bounds on the worst-case peak
gain of the sensitivity transfer function, as well as the specific frequency
where the maximum gain occurs. The wcu variable contains specific values of
the uncertain elements that achieve this worst-case behavior.

You can use usubs to substitute these worst-case values for uncertain
elements, and compare the nominal and worst-case behavior. Use bodemag
and step to make the comparison.

bodemag(S1.NominalValue,'b',usubs(S1,wcu1),'b');
hold on
bodemag(S2.NominalValue,'r',usubs(S2,wcu2),'r');
hold off
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Clearly, while K2 achieves better nominal sensitivity than K1, the nominal
closed-loop bandwidth extends too far into the frequency range where the
process uncertainty is very large. Hence the worst-case performance of K2 is
inferior to K1 for this particular uncertain model.

The next section explores these robustness analysis tools further on a
multiinput, multioutput system.
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MIMO Robustness Analysis
The previous sections focused on simple uncertainty models of single-input
and single-output systems, predominantly from a transfer function
perspective. You can also create uncertain state-space models made up of
uncertain state-space matrices. Moreover, all the analysis tools covered thus
far can be applied to these systems as well.

Consider, for example, a two-input, two-output, two-state system whose
model has parametric uncertainty in the state-space matrices. First create
an uncertain parameter p. Using the parameter, make uncertain A and C
matrices. The B matrix happens to be not-uncertain, although you will add
frequency-domain input uncertainty to the model later.

p = ureal('p',10,'Percentage',10);
A = [0 p;-p 0];
B = eye(2);
C = [1 p;-p 1];
H = ss(A,B,C,[0 0;0 0])

H =

Uncertain continuous-time state-space model with 2 outputs, 2 inputs, 2 s
The model uncertainty consists of the following blocks:

p: Uncertain real, nominal = 10, variability = [-10,10]%, 2 occurrences

Type "H.NominalValue" to see the nominal value, "get(H)" to see all propert

You can view the properties of the uncertain system H using the get command.

get(H)

a: [2x2 umat]
b: [2x2 double]
c: [2x2 umat]
d: [2x2 double]
e: []

StateName: {2x1 cell}
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StateUnit: {2x1 cell}
NominalValue: [2x2 ss]
Uncertainty: [1x1 struct]

InternalDelay: [0x1 double]
InputDelay: [2x1 double]

OutputDelay: [2x1 double]
Ts: 0

TimeUnit: 'seconds'
InputName: {2x1 cell}
InputUnit: {2x1 cell}

InputGroup: [1x1 struct]
OutputName: {2x1 cell}
OutputUnit: {2x1 cell}

OutputGroup: [1x1 struct]
Name: ''

Notes: {}
UserData: []

SamplingGrid: [1x1 struct]

Most properties behave in the same way as the corresponding properties of ss
objects. The property NominalValue is itself an ss object.

Adding Independent Input Uncertainty to Each Channel

The model for H does not include actuator dynamics. Said differently, the
actuator models are unity-gain for all frequencies.

Nevertheless, the behavior of the actuator for channel 1 is modestly uncertain
(say 10%) at low frequencies, and the high-frequency behavior beyond 20
rad/s is not accurately modeled. Similar statements hold for the actuator in
channel 2, with larger modest uncertainty at low frequency (say 20%) but
accuracy out to 45 rad/s.

Use ultidyn objects Delta1 and Delta2 along with shaping filters W1 and W2
to add this form of frequency domain uncertainty to the model.

W1 = makeweight(.1,20,50);
W2 = makeweight(.2,45,50);
Delta1 = ultidyn('Delta1',[1 1]);
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Delta2 = ultidyn('Delta2',[1 1]);
G = H*blkdiag(1+W1*Delta1,1+W2*Delta2)

G =

Uncertain continuous-time state-space model with 2 outputs, 2 inputs, 4 s
The model uncertainty consists of the following blocks:

Delta1: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences
Delta2: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences
p: Uncertain real, nominal = 10, variability = [-10,10]%, 2 occurrences

Type "G.NominalValue" to see the nominal value, "get(G)" to see all propert

Note that G is a two-input, two-output uncertain system, with dependence on
three uncertain elements, Delta1, Delta2, and p. It has four states, two from
H and one each from the shaping filters W1 and W2, which are embedded in G.

You can plot a 2-second step response of several samples of G The 10%
uncertainty in the natural frequency is obvious.

stepplot(G,2)
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You can create a Bode plot of samples of G. The high-frequency uncertainty
in the model is also obvious. For clarity, start the Bode plot beyond the
resonance.

bodeplot(G,{13 100})
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Closed-Loop Robustness Analysis

Load the controller and verify that it is two-input and two-output.

load mimoKexample
size(K)

Warning: Updating objects saved with previous MATLAB version...
Resave your MAT files to improve loading speed.
State-space model with 2 outputs, 2 inputs, and 9 states.
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You can use the command loopsens to form all the standard plant/controller
feedback configurations, including sensitivity and complementary sensitivity
at both the input and output. Because G is uncertain, all the closed-loop
systems are uncertain as well.

F = loopsens(G,K)

F =

Si: [2x2 uss]
Ti: [2x2 uss]
Li: [2x2 uss]
So: [2x2 uss]
To: [2x2 uss]
Lo: [2x2 uss]

PSi: [2x2 uss]
CSo: [2x2 uss]

Poles: [13x1 double]
Stable: 1

F is a structure with many fields. The poles of the nominal closed-loop system
are in F.Poles, and F.Stable is 1 if the nominal closed-loop system is stable.
In the remaining 10 fields, S stands for sensitivity, T or complementary
sensitivity, and L for open-loop gain. The suffixes i and o refer to the input
and output of the plant. Finally, P and C refer to the plant and controller.

Hence, Ti is mathematically the same as:

Lo is G*K, and CSo is mathematically the same as

Examine the transmission of disturbances at the plant input to the plant
output by plotting responses of F.PSi. Graph some samples along with the
nominal.
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bodemag(F.PSi.NominalValue,'r+',F.PSi,'b-',{1e-1 100})

Nominal Stability Margins

You can use loopmargin o investigate loop-at-a-time gain and phase margins,
loop-at-a-time disk margins, and simultaneous multivariable margins. They
are computed for the nominal system and do not reflect the uncertainty
models within G.
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Explore the simultaneous margins individually at the plant input,
individually at the plant output, and simultaneously at both input and output.

[I,DI,SimI,O,DO,SimO,Sim] = loopmargin(G,K);

The third output argument is the simultaneous gain and phase variations
allowed in all input channels to the plant.

SimI

SimI =

GainMargin: [0.1179 8.4796]
PhaseMargin: [-76.5484 76.5484]

Frequency: 6.3496

This information implies that the gain at the plant input can vary in both
channels independently by factors between (approximately) 1/8 and 8, as well
as phase variations up to 76 degrees.

The sixth output argument is the simultaneous gain and phase variations
allowed in all output channels to the plant.

SimO

SimO =

GainMargin: [0.1190 8.4013]
PhaseMargin: [-76.4242 76.4242]

Frequency: 19.5393

Note that the simultaneous margins at the plant output are similar to those
at the input. This is not always the case in multiloop feedback systems.

The last output argument is the simultaneous gain and phase variations
allowed in all input and output channels to the plant. As expected, when
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you consider all such variations simultaneously, the margins are somewhat
smaller than those at the input or output alone.

Sim

Sim =

GainMargin: [0.5660 1.7667]
PhaseMargin: [-30.9788 30.9788]

Frequency: 9.2914

Nevertheless, these numbers indicate a generally robust closed-loop system,
able to tolerate significant gain (more than +/-50% in each channel) and 30
degree phase variations simultaneously in all input and output channels
of the plant.

Robustness of Stability Model Uncertainty

With loopmargin, you determined various margins of the nominal, multiloop
system. These margins are computed only for the nominal system, and do
not reflect the uncertainty explicitly modeled by the ureal and ultidyn
objects. When you work with detailed, complex uncertain system models,
the conventional margins computed by loopmargin might not always be
indicative of the actual stability margins associated with the uncertain
elements. You can use robuststab to check the stability margin of the system
to these specific modeled variations.

In this example, use robuststab to compute the stability margin of the
closed-loop system represented by Delta1, Delta2, and p.

Use any of the closed-loop systems within F = loopsens(G,K). All of them,
F.Si, F.To, etc., have the same internal dynamics, and hence the stability
properties are the same.

[stabmarg,desgtabu,report] = robuststab(F.So);
stabmarg

4-24



MIMO Robustness Analysis

stabmarg =

LowerBound: 2.2174
UpperBound: 2.2175

DestabilizingFrequency: 13.5963

report

report =

Uncertain system is robustly stable to modeled uncertainty.
-- It can tolerate up to 222% of the modeled uncertainty.
-- A destabilizing combination of 222% of the modeled uncertainty was foun
-- This combination causes an instability at 13.6 rad/seconds.
-- Sensitivity with respect to the uncertain elements are:

'Delta1' is 55%. Increasing 'Delta1' by 25% leads to a 14% decrease i
'Delta2' is 54%. Increasing 'Delta2' by 25% leads to a 14% decrease i
'p' is 39%. Increasing 'p' by 25% leads to a 10% decrease in the marg

This analysis confirms what the loopmargin analysis suggested. The
closed-loop system is quite robust, in terms of stability, to the variations
modeled by the uncertain parameters Delta1, Delta2, and p. In fact, the
system can tolerate more than twice the modeled uncertainty without losing
closed-loop stability.

Worst-Case Gain Analysis

You can plot the Bode magnitude of the nominal output sensitivity function.
It clearly shows decent disturbance rejection in all channels at low frequency.

bodemag(F.So.NominalValue,{1e-1 100})
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You can compute the peak value of the maximum singular value of the
frequency response matrix using norm.

[PeakNom,freq] = norm(F.So.NominalValue,'inf')

PeakNom =

1.1288
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freq =

6.7969

The peak is about 1.13, occurring at a frequency of 36 rad/s. What is the
maximum output sensitivity gain that is achieved when the uncertain
elements Delta1, Delta2, and p vary over their ranges? You can use wcgain
to answer this.

[maxgain,wcu] = wcgain(F.So);

The analysis indicates that the worst-case gain is somewhere between 2.1 and
2.2. The frequency where the peak is achieved is about 8.5.

You can replace the values for Delta1, Delta2, and p that achieve the gain
of 2.1, using usubs. . Make the substitution in the output complementary
sensitivity, and do a step response.

step(F.To.NominalValue,usubs(F.To,wcu),5)
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The perturbed response, which is the worst combination of uncertain values
in terms of output sensitivity amplification, does not show significant
degradation of the command response. The settling time is increased by about
50%, from 2 to 4, and the off-diagonal coupling is increased by about a factor
of about 2, but is still quite small.

You can also examine the worst-case frequency response alongside the
nominal and sampled systems using wcgainplot.

wcgainplot(F.To,{1e-1,100})
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See Also ultidyn | loopsens | loopmargin | robuststab | wcgain | usubs |
wcgainplot
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Summary of Robustness Analysis Tools

Function Description

ureal Create uncertain real parameter.

ultidyn Create uncertain, linear, time-invariant dynamics.

uss Create uncertain state-space object from uncertain
state-space matrices.

ufrd Create uncertain frequency response object.

loopsens Compute all relevant open and closed-loop
quantities for a MIMO feedback connection.

loopmargin Compute loop-at-a-time as well as MIMO gain and
phase margins for a multiloop system, including
the simultaneous gain/phase margins.

robustperf Robustness performance of uncertain systems.

robuststab Compute the robust stability margin of a nominally
stable uncertain system.

wcgain Compute the worst-case gain of a nominally stable
uncertain system.

wcmargin Compute worst-case (over uncertainty)
loop-at-a-time disk-based gain and phase margins.

wcsens Compute worst-case (over uncertainty) sensitivity
of plant-controller feedback loop.
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Interpretation of H-Infinity Norm

Norms of Signals and Systems
There are several ways of defining norms of a scalar signal e(t) in the
time domain. We will often use the 2-norm, (L2-norm), for mathematical
convenience, which is defined as

e e t dt2
2

1
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If this integral is finite, then the signal e is square integrable, denoted as e
L2. For vector-valued signals
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the 2-norm is defined as
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In µ-tools the dynamic systems we deal with are exclusively linear, with
state-space model

x
e

A B
C D

x
d

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ ,

or, in the transfer function form,
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e(s) = T(s)d(s), T(s):= C(sI – A)–1B + D

Two mathematically convenient measures of the transfer matrix T(s) in the
frequency domain are the matrix H2 and H∞ norms,

T T j d

T T j

F

R

2
2

1
21

2
:

: max ,
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where the Frobenius norm (see the MATLAB norm command) of a complex
matrix M is

M M MF : .*= ( )Trace

Both of these transfer function norms have input/output time-domain
interpretations. If, starting from initial condition x(0) = 0, two signals d and
e are related by

x
e

A B
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x
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then

• For d, a unit intensity, white noise process, the steady-state variance of e
is T 2.

• The L2 (or RMS) gain from d → e,

max
d

e

d≠0

2

2

is equal to T ∞. This is discussed in greater detail in the next section.

Using Weighted Norms to Characterize Performance
Any performance criterion must also account for
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• Relative magnitude of outside influences

• Frequency dependence of signals

• Relative importance of the magnitudes of regulated variables

So, if the performance objective is in the form of a matrix norm, it should
actually be a weighted norm

WLTWR

where the weighting function matrices WL and WR are frequency dependent,
to account for bandwidth constraints and spectral content of exogenous
signals. The most natural (mathematical) manner to characterize acceptable
performance is in terms of the MIMO · ∞ (H∞) norm. For this reason, this
section now discusses some interpretations of the H∞ norm.

Unweighted MIMO System

Suppose T is a MIMO stable linear system, with transfer function matrix T(s).

For a given driving signal d t( ) , define e as the output, as shown below.

Note that it is more traditional to write the diagram in Unweighted MIMO
System: Vectors from Left to Right on page 5-4 with the arrows going from
left to right as in Weighted MIMO System on page 5-6.

Unweighted MIMO System: Vectors from Left to Right

The two diagrams shown above represent the exact same system. We prefer to
write these block diagrams with the arrows going right to left to be consistent
with matrix and operator composition.

Assume that the dimensions of T are ne × nd. Let β > 0 be defined as

5-4



Interpretation of H-Infinity Norm
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Moreover, there are specific disturbances d that result in the ratio  e d2 2arbitrarily close to β. Because of this, T ∞ is referred to as the L2 (or RMS)
gain of the system.

As you would expect, a sinusoidal, steady-state interpretation of T ∞ is also

possible: For any frequency  ∈ R , any vector of amplitudes a Rnd
∈ , and

any vector of phases  ∈ Rnd , with a 2 ≤ 1, define a time signal
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Applying this input to the system T results in a steady-state response ess of
the form
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The vector b Rne∈ will satisfy b 2 ≤ β. Moreover, β, as defined in Weighted
MIMO System on page 5-6, is the smallest number such that this is true
for every a 2 ≤ 1,  , and ϕ.

Note that in this interpretation, the vectors of the sinusoidal magnitude
responses are unweighted, and measured in Euclidean norm. If realistic
multivariable performance objectives are to be represented by a single
MIMO · ∞ objective on a closed-loop transfer function, additional scalings
are necessary. Because many different objectives are being lumped into one
matrix and the associated cost is the norm of the matrix, it is important to
use frequency-dependent weighting functions, so that different requirements
can be meaningfully combined into a single cost function. Diagonal weights
are most easily interpreted.

Consider the diagram of Weighted MIMO System on page 5-6, along with
Unweighted MIMO System: Vectors from Left to Right on page 5-4.

Assume that WL and WR are diagonal, stable transfer function matrices, with
diagonal entries denoted Li and Ri.
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.

Weighted MIMO System

Bounds on the quantity WLTWR ∞ will imply bounds about the sinusoidal

steady-state behavior of the signals d and  e Td=( ) in the diagram of
Unweighted MIMO System: Vectors from Left to Right on page 5-4.

Specifically, for sinusoidal signal d , the steady-state relationship between
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 e Td=( ) , d and WLTWR ∞ is as follows. The steady-state solution ess ,
denoted as
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for all sinusoidal input signals d of the form
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satisfying

d
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d
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2
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1
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∑

if and only if WLTWR ∞ ≤ 1.

This approximately (very approximately — the next statement is not actually
correct) implies that WLTWR ∞ ≤ 1 if and only if for every fixed frequency  ,

and all sinusoidal disturbances d of the form Equation 5-2 satisfying

d W ji Ri
≤ ( )
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the steady-state error components will satisfy

e
W j

i
Li

≤
( )
1


.

This shows how one could pick performance weights to reflect the desired
frequency-dependent performance objective. Use WR to represent the relative
magnitude of sinusoids disturbances that might be present, and use 1/WL to
represent the desired upper bound on the subsequent errors that are produced.

Remember, however, that the weighted H∞ norm does not actually

give element-by-element bounds on the components of e based on

element-by-element bounds on the components of d . The precise bound it

gives is in terms of Euclidean norms of the components of e and d (weighted
appropriately by WL(j ) and WR(j )).
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H-Infinity Performance

Performance as Generalized Disturbance Rejection
The modern approach to characterizing closed-loop performance objectives
is to measure the size of certain closed-loop transfer function matrices using
various matrix norms. Matrix norms provide a measure of how large output
signals can get for certain classes of input signals. Optimizing these types
of performance objectives over the set of stabilizing controllers is the main
thrust of recent optimal control theory, such as L1, H2, H∞, and optimal
control. Hence, it is important to understand how many types of control
objectives can be posed as a minimization of closed-loop transfer functions.

Consider a tracking problem, with disturbance rejection, measurement noise,
and control input signal limitations, as shown in Generalized and Weighted
Performance Block Diagram on page 5-11. K is some controller to be designed
and G is the system you want to control.

Typical Closed-Loop Performance Objective

A reasonable, though not precise, design objective would be to design K
to keep tracking errors and control input signal small for all reasonable
reference commands, sensor noises, and external force disturbances.

Hence, a natural performance objective is the closed-loop gain from
exogenous influences (reference commands, sensor noise, and external force
disturbances) to regulated variables (tracking errors and control input signal).
Specifically, let T denote the closed-loop mapping from the outside influences
to the regulated variables:

5-9



5 H-Infinity and Mu Synthesis

You can assess performance by measuring the gain from outside influences
to regulated variables. In other words, good performance is associated with
T being small. Because the closed-loop system is a multiinput, multioutput
(MIMO) dynamic system, there are two different aspects to the gain of T:

• Spatial (vector disturbances and vector errors)

• Temporal (dynamic relationship between input/output signals)

Hence the performance criterion must account for

• Relative magnitude of outside influences

• Frequency dependence of signals

• Relative importance of the magnitudes of regulated variables

So if the performance objective is in the form of a matrix norm, it should
actually be a weighted norm

WLTWR

where the weighting function matricesWL andWR are frequency dependent, to
account for bandwidth constraints and spectral content of exogenous signals.
A natural (mathematical) manner to characterize acceptable performance
is in terms of the MIMO · ∞ (H∞) norm. See “Interpretation of H-Infinity
Norm” on page 5-2 for an interpretation of the H∞ norm and signals.

Interconnection with Typical MIMO Performance Objectives
The closed-loop performance objectives are formulated as weighted closed-loop
transfer functions that are to be made small through feedback. A generic
example, which includes many relevant terms, is shown in block diagram
form in Generalized and Weighted Performance Block Diagram on page 5-11.
In the diagram, G denotes the plant model and K is the feedback controller.
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Generalized and Weighted Performance Block Diagram

The blocks in this figure might be scalar (SISO) and/or multivariable (MIMO),
depending on the specific example. The mathematical objective of H∞ control
is to make the closed-loop MIMO transfer function Ted satisfy Ted ∞ < 1. The
weighting functions are used to scale the input/output transfer functions such

that when Ted ∞ < 1, the relationship between
d and e is suitable.

Performance requirements on the closed-loop system are transformed into
the H∞ framework with the help of weighting or scaling functions. Weights
are selected to account for the relative magnitude of signals, their frequency
dependence, and their relative importance. This is captured in the figure
above, where the weights or scalings [Wcmd, Wdist,Wsnois] are used to transform
and scale the normalized input signals [d1,d2,d3] into physical units defined
as [d1, d2, d3]. Similarly weights or scalings [Wact, Wperf1,Wperf2] transform
and scale physical units into normalized output signals [e1, e2, e3]. An
interpretation of the signals, weighting functions, and models follows.

5-11



5 H-Infinity and Mu Synthesis

Signal Meaning

d1

d1

Normalized reference command

Typical reference command in physical units

d2

d2

Normalized exogenous disturbances

Typical exogenous disturbances in physical units

d3

d3

Normalized sensor noise

Typical sensor noise in physical units

e1

e1

Weighted control signals

Actual control signals in physical units

e2

e2

Weighted tracking errors

Actual tracking errors in physical units

e3

e3

Weighted plant errors

Actual plant errors in physical units

Wcmd

Wcmd is included in H∞ control problems that require tracking of a reference
command. Wcmd shapes the normalized reference command signals
(magnitude and frequency) into the actual (or typical) reference signals that
you expect to occur. It describes the magnitude and the frequency dependence
of the reference commands generated by the normalized reference signal.
Normally Wcmd is flat at low frequency and rolls off at high frequency. For
example, in a flight control problem, fighter pilots generate stick input
reference commands up to a bandwidth of about 2 Hz. Suppose that the stick
has a maximum travel of three inches. Pilot commands could be modeled as
normalized signals passed through a first-order filter:

W
s

cmd =

⋅
+

3
1

2 2
1



.
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Wmodel

Wmodel represents a desired ideal model for the closed-looped system and is
often included in problem formulations with tracking requirements. Inclusion
of an ideal model for tracking is often called a model matching problem, i.e.,
the objective of the closed-loop system is to match the defined model. For
good command tracking response, you might want the closed-loop system to
respond like a well-damped second-order system. The ideal model would
then be

W
s

model =
+ +


 

2

2 22

for specific desired natural frequency ω and desired damping ratio ζ. Unit
conversions might be necessary to ensure exact correlation between the ideal
model and the closed-loop system. In the fighter pilot example, suppose that
roll-rate is being commanded and 10º/second response is desired for each inch
of stick motion. Then, in these units, the appropriate model is:

W
s

model =
+ +

10
2

2

2 2


 
.

Wdist

Wdist shapes the frequency content and magnitude of the exogenous
disturbances affecting the plant. For example, consider an electron microscope
as the plant. The dominant performance objective is to mechanically isolate
the microscope from outside mechanical disturbances, such as ground
excitations, sound (pressure) waves, and air currents. You can capture the
spectrum and relative magnitudes of these disturbances with the transfer
function weighting matrix Wdist.

Wperf1

Wperf1 weights the difference between the response of the closed-loop system
and the ideal model Wmodel. Often you might want accurate matching of the
ideal model at low frequency and require less accurate matching at higher
frequency, in which case Wperf1 is flat at low frequency, rolls off at first or
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second order, and flattens out at a small, nonzero value at high frequency.
The inverse of the weight is related to the allowable size of tracking errors,
when dealing with the reference commands and disturbances described by
Wcmd and Wdist.

Wperf2

Wperf2 penalizes variables internal to the process G, such as actuator states
that are internal to G or other variables that are not part of the tracking
objective.

Wact

Wact is used to shape the penalty on control signal use. Wact is a frequency
varying weighting function used to penalize limits on the deflection/position,
deflection rate/velocity, etc., response of the control signals, when dealing
with the tracking and disturbance rejection objectives defined above. Each
control signal is usually penalized independently.

Wsnois

Wsnois represents frequency domain models of sensor noise. Each sensor
measurement feedback to the controller has some noise, which is often
higher in one frequency range than another. The Wsnois weight tries to
capture this information, derived from laboratory experiments or based on
manufacturer measurements, in the control problem. For example, medium
grade accelerometers have substantial noise at low frequency and high
frequency. Therefore the corresponding Wsnois weight would be larger at low
and high frequency and have a smaller magnitude in the mid-frequency
range. Displacement or rotation measurement is often quite accurate at low
frequency and in steady state, but responds poorly as frequency increases.
The weighting function for this sensor would be small at low frequency,
gradually increase in magnitude as a first- or second-order system, and level
out at high frequency.

Hsens

Hsens represents a model of the sensor dynamics or an external antialiasing
filter. The transfer functions used to describe Hsens are based on physical
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characteristics of the individual components. These models might also be
lumped into the plant model G.

This generic block diagram has tremendous flexibility and many control
performance objectives can be formulated in the H∞ framework using this
block diagram description.

Robustness in the H-Infinity Framework
Performance and robustness tradeoffs in control design were discussed in the
context of multivariable loop shaping in “Tradeoff Between Performance and
Robustness” on page 2-2. In the H∞ control design framework, you can include
robustness objectives as additional disturbance to error transfer functions —
disturbances to be kept small. Consider the following figure of a closed-loop
feedback system with additive and multiplicative uncertainty models.

The transfer function matrices are defined as:

TF s T s KG I GK

TF s KS s K I GK

z w I

z w O

( ) = ( ) = +( )

( ) = ( ) = +( )
→

−

→
−

1 1

2 2

1

1

where TI(s) denotes the input complementary sensitivity function and SO(s)
denotes the output sensitivity function. Bounds on the size of the transfer
function matrices from z1 to w1 and z2 to w2 ensure that the closed-loop
system is robust to multiplicative uncertainty, ΔM(s), at the plant input, and
additive uncertainty, ΔA(s), around the plant G(s). In the H∞ control problem
formulation, the robustness objectives enter the synthesis procedure as
additional input/output signals to be kept small. The interconnection with the
uncertainty blocks removed follows.
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The H∞ control robustness objective is now in the same format as the
performance objectives, that is, to minimize the H∞ norm of the transfer
matrix from z, [z1,z2], to w, [w1,w2].

Weighting or scaling matrices are often introduced to shape the frequency and
magnitude content of the sensitivity and complementary sensitivity transfer
function matrices. Let WM correspond to the multiplicative uncertainty and
WA correspond to the additive uncertainty model. ΔM(s) and ΔA(s) are assumed
to be a norm bounded by 1, i.e., |ΔM(s)|<1 and |ΔA(s)|<1. Hence as a function
of frequency, |WM(jω)| and |WA(jω)| are the respective sizes of the largest
anticipated additive and multiplicative plant perturbations.

The multiplicative weighting or scaling WM represents a percentage error in
the model and is often small in magnitude at low frequency, between 0.05 and
0.20 (5% to 20% modeling error), and growing larger in magnitude at high
frequency, 2 to 5 ((200% to 500% modeling error). The weight will transition
by crossing a magnitude value of 1, which corresponds to 100% uncertainty
in the model, at a frequency at least twice the bandwidth of the closed-loop
system. A typical multiplicative weight is

W
s

s
M =

+

+
0 10

1
5

1

1
200

1
. .

By contrast, the additive weight or scaling WA represents an absolute error
that is often small at low frequency and large in magnitude at high frequency.
The magnitude of this weight depends directly on the magnitude of the plant
model, G(s).
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Active Suspension Control Design
This example shows how to use robust control techniques to design an active
suspension system for a quarter car body and wheel assembly model. In this
example, you use H∞ design techniques to design a controller for a nominal
quarter-car model. Then, you use μ synthesis to design a robust controller
that accounts for uncertainty in the model.

Conventional passive suspensions use a spring and damper between the
car body and wheel assembly. The spring-damper characteristics are
adjusted to emphasize one of several conflicting objectives such as passenger
comfort, road holding, and suspension deflection. Active suspensions use
a feedback-controller hydraulic actuator between the chassis and wheel
assembly, which allows the designer to better balance these objectives.

Quarter-Car Suspension Model

This example uses the quarter-car model of the following illustration to design
active suspension control laws.

��

��

��
�� ��

��

��

�	




The mass, mb, represents the car chassis (body) and the mass, mw, represents
the wheel assembly. The spring, ks, and damper, bs, represent the passive
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spring and shock absorber placed between the car body and the wheel
assembly. The spring, kt, models the compressibility of the pneumatic tire.
The variables xb, xw, and r are the car body travel, the wheel travel, and the
road disturbance, respectively. The force, fs, which is applied between the
body and wheel assembly, is controlled by feedback. This force represents the
active component of the suspension system.

The following state-space equations describe the quarter-car dynamics.
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The state variables in the system are defined as x xb1 : , x xb2 :  , x xw3 : ,

and x xw4 :  .

Define the physical parameters of the system.

mb = 300; % kg
mw = 60; % kg
bs = 1000; % N/m/s
ks = 16000 ; % N/m
kt = 190000; % N/m

Use these equations and parameter values to construct a state-space model,
qcar, of the quarter-car suspension system.

A = [ 0 1 0 0; [-ks -bs ks bs]/mb ; ...
0 0 0 1; [ks bs -ks-kt -bs]/mw];

B = [0 0; 0 10000/mb ; 0 0; [kt -10000]/mw];
C = [1 0 0 0; 1 0 -1 0; A(2,:)];
D = [0 0; 0 0; B(2,:)];

qcar = ss(A,B,C,D);
qcar.StateName = {'body travel xb (m)';'body vel (m/s)';...
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'wheel travel xw (m)';'wheel vel (m/s)'};
qcar.InputName = {'r';'fs'};
qcar.OutputName = {'xb';'sd';'ab'};

The model inputs are the road disturbance, r, and actuator force, fs. The

model outputs are the car body travel, xb , suspension deflection s x xd b w  ,

and car body acceleration a xb s  .

The transfer function from actuator to body travel and acceleration has an
imaginary-axis zero. Examine the zero of this transfer function.

tzero(qcar({'xb','ab'},'fs'))

ans =

-0.0000 +56.2731i
-0.0000 -56.2731i

The natural frequency of this zero, 56.27 rad/s, is called the tire-hop frequency.

The transfer function from the actuator to suspension deflection also has an
imaginary-axis zero. Examine this zero.

zero(qcar('sd','fs'))

ans =

0.0000 +22.9734i
0.0000 -22.9734i

The natural frequency of this zero, 22.97 rad/s, is called the rattlespace
frequency.

Plot the frequency response of the quarter-car model from inputs, (r,fs), to
outputs, (ab,sd). Both zeros are visible on the Bode plot.

bodemag(qcar({'ab','sd'},'r'),'b',qcar({'ab','sd'},'fs'),'r',{1 100});
legend('Road disturbance (r)','Actuator force (fs)','location','SouthWest')
title(['Gain from road dist (r) and actuator force (fs) '...

'to body accel (ab) and suspension travel (sd)'])
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Road disturbances influence the motion of the car and suspension:

• Small body acceleration influences passenger comfort.

• Small suspension travel contributes to good road handling. Further, limits
on the actuator displacement constrain the allowable travel.

Because of the imaginary axis zeros, feedback control cannot improve the
response from road disturbance (r) to body acceleration (ab) at the tire-hop
frequency. Similarly, feedback control cannot improve the response from r to
suspension deflection (sd) at the rattlespace frequency. Moreover, there is an
inherent trade-off between passenger comfort and suspension deflection. Any
reduction of body travel at low frequency results in an increase of suspension
deflection. This trade-off arises because of the relationship xw = xb – sd and the
fact that xw roughly follows r at low frequency (less than 5 rad/s).

Hydraulic Actuator Model
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The hydraulic actuator used for active suspension control is connected
between the body mass, mb, and the wheel assembly mass, mw. The nominal
actuator dynamics can be represented by the first-order transfer function:

ActNom s
s

  


1
1
60

1
.

The maximum displacement is 0.05 m.

The nominal actuator model approximates the physical actuator dynamics.
You can model variations between the actuator model and the physical
device as a family of actuator models. You can also use this approach to
model variations between the passive quarter-car model and actual vehicle
dynamics. The resulting family of models comprises a nominal model with a
frequency-dependent amount of uncertainty.

Create an uncertain model that represents this family of models.

ActNom = tf(1,[1/60 1]);
Wunc = makeweight(0.40,15,3);
unc = ultidyn('unc',[1 1],'SampleStateDim',5);
Act = ActNom*(1 + Wunc*unc);
Act.InputName = 'u';
Act.OutputName = 'fs';

At low frequency, below 3 rad/s, the model can vary up to 40% from its nominal
value. Around 3 rad/s, the percentage variation starts to increase. The
uncertainty crosses 100% at 15 rad/s, and reaches 2000% at approximately
1000 rad/sec. The weighting function, Wunc, reflects this profile and is used to
modulate the amount of uncertainty as a function of frequency. The result
Act is an uncertain state-space model of the actuator.

Examine the uncertain actuator model by plotting the frequency response of
20 randomly sampled models from Act.

bode(Act,'b',Act.NominalValue,'r+',logspace(-1,3,120))
title('Nominal and 20 random actuator models')
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The plus (+) marker denotes the nominal actuator model. The blue solid lines
represent the randomly sampled models.

Design Objectives for H-Infinity Synthesis

To use H∞ synthesis algorithms, you must express your design objectives as
a single cost function to be minimized. For the quarter-car model, the main
control objectives are formulated in terms of passenger comfort and road
handling. These objectives relate to body acceleration, ab, and suspension
travel, sd. Other factors that influence the control design include:

• Characteristics of the road disturbance

• Quality of the sensor measurements for feedback

• Limits on the available control force

Use weights to model external disturbances and quantify the design
objectives, as shown in the following diagram.
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The feedback controller uses the measurements y1 and y2 of the suspension
travel, sd, and body acceleration, ab, to compute the control signal, u. This
control signal drives the hydraulic actuator. There are three external sources
of disturbance:

• The road disturbance, r, which is modeled as a normalized signal, d1, which
is shaped by a weighting function Wroad.

• Sensor noise on both measurements. This noise is modeled as normalized
signals, d2 and d3, which are shaped by weighting functions Wd2 and Wd3.

You can reinterpret the control objectives as a disturbance rejection goal.
The goal is to minimize the impact of the disturbances, d1, d2, and d3, on a
weighted combination of suspension travel (sd), body acceleration (ab), and
control effort (u). You can consider the H∞ norm (peak gain) as the measure
of the effect of the disturbances. Then, you can meet the requirements by
designing a controller that minimizes the H∞ norm from the disturbance
inputs, d1, d2, and d3, to the error signals , e1, e2, and e3.

Create the weighting functions that model the design objectives.

Wroad = ss(0.07);
Wroad.u = 'd1';
Wroad.y = 'r';
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Wact = 8*tf([1 50],[1 500]);
Wact.u = 'u';
Wact.y = 'e1';

Wd2 = ss(0.01);
Wd2.u = 'd2';
Wd2.y = 'Wd2';

Wd3 = ss(0.5);
Wd3.u = 'd3';
Wd3.y = 'Wd3';

The constant weight Wroad = 0.07 models broadband road deflections of
magnitude 7 cm. Wact is a highpass filter. This filter penalizes high-frequency
content in the control signal, and thus limits control bandwidth. Wd2 and Wd3
model broadband sensor noise of intensity 0.01 and 0.5, respectively. In a
more realistic design, Wd2 and Wd3 would be frequency dependent to model
the noise spectrum of the displacement and acceleration sensors. The inputs
and outputs of all weighting functions are named to facilitate interconnection.
The notation u and y are shorthand for the InputName and OutputName
properties, respectively.

Specify target functions for the closed-loop response of the system from the
road disturbance, r, to the suspension deflection, sd, and body acceleration, ab.

HandlingTarget = 0.04 * tf([1/8 1],[1/80 1]);
ComfortTarget = 0.4 * tf([1/0.45 1],[1/150 1]);
Targets = [HandlingTarget;ComfortTarget];

Because of the actuator uncertainty and imaginary-axis zeros, the targets
attenuate disturbances only below 10 rad/s. These targets represent the
goals of passenger comfort (small car body acceleration) and adequate road
handling (small suspension deflection).

Plot the closed-loop targets and compare to the open-loop response.

bodemag(qcar({'sd','ab'},'r')*Wroad,'b',Targets,'r--',{1,1000})
grid, title('Response to road disturbance')
legend('Open-loop','Closed-loop target')
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The corresponding performance weightsWsd andWab are the reciprocals of the
comfort and handling targets. To investigate the trade-off between passenger
comfort and road handling, construct three sets of weights, (βWsd,(1 – β)Wab).
These weights use a blending parameter, β, to modulate the trade-off.

beta = reshape([0.01 0.5 0.99],[1 1 3]);

Wsd = beta/HandlingTarget;
Wsd.u = 'sd';
Wsd.y = 'e3';

Wab = (1-beta)/ComfortTarget;
Wab.u = 'ab';
Wab.y = 'e2';

Wsd and Wab are arrays of weighting functions that correspond to three
different trade-offs: emphasizing comfort (β = 0.01), balancing comfort and
handling (β = 0.5), and emphasizing handling (β = 0.99).
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Connect the quarter-car plant model, actuator model, and weighting functions
to construct the block diagram of the plant model weighted by the objectives.

sdmeas = sumblk('y1 = sd+Wd2');
abmeas = sumblk('y2 = ab+Wd3');
ICinputs = {'d1';'d2';'d3';'u'};
ICoutputs = {'e1';'e2';'e3';'y1';'y2'};
qcaric = connect(qcar(2:3,:),Act,Wroad,Wact,Wab,Wsd,Wd2,Wd3,...

sdmeas,abmeas,ICinputs,ICoutputs);

qcaric is an array of three models, one for each value of the blending
parameter, β. Also, the models in qcaric are uncertain, because they contain
the uncertain actuator model Act.

Nominal H-Infinity Synthesis

Use hinfsyn to compute an H∞ controller for each value of the blending
parameter, β. hinfsyn ignores the uncertainty in the plant models and
synthesizes a controller for the nominal value of each model.

ncont = 1;
nmeas = 2;
K = ss(zeros(ncont,nmeas,3));
gamma = zeros(3,1);
for i=1:3

[K(:,:,i),~,gamma(i)] = hinfsyn(qcaric(:,:,i),nmeas,ncont);
end

The weighted plant model has one control input (ncont), the hydraulic
actuator force. The model also has two measurement outputs (nmeas), which
give the suspension deflection and body acceleration.

Examine the resulting closed-loop H∞ norms, gamma.

gamma

gamma =

0.9410
0.6724
0.8877
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The three H∞ controllers achieve closed-loop H∞ norms of 0.94 (emphasizing
comfort), 0.67 (balancing comfort and handling), and 0.89 (emphasizing
handling).

Construct closed-loop models of the quarter-car plant with the synthesized
controller, corresponding to each of the three blending parameter values.
Compare the frequency response from the road disturbance to xb, sd, and ab
for the passive and active suspensions.

K.u = {'sd','ab'}; K.y = 'u';

CL = connect(qcar,Act.Nominal,K,'r',{'xb';'sd';'ab'});

clf

bodemag(qcar(:,'r'),'b', CL(:,:,1),'r-.', ...

CL(:,:,2),'m-.', CL(:,:,3),'k:',{1,140})

grid

legend('Open-loop','Comfort','Balanced','Handling','location','SouthEast')

title('Body travel, suspension deflection, and body acceleration due to road')
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The solid blue line corresponds to the open-loop response. The other lines
are the closed-loop frequency responses for the different comfort and
handling blends. All three controllers reduce suspension deflection and body
acceleration below the rattlespace frequency (23 rad/s).

Time-Domain Evaluation

To further evaluate the three designs, perform time-domain simulations using
the following road disturbance signal r(t):

r t
a t t      



1 8 0 0 25
0

cos , .
,


otherwise.

This signal corresponds to a road bump of height 5 cm.

Create a vector that represents the road disturbance.
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t = 0:0.005:1;
roaddist = zeros(size(t));
roaddist(1:51) = 0.025*(1-cos(8*pi*t(1:51)));

Build the closed-loop model using the synthesized controller.

SIMK = connect(qcar,Act.Nominal,K,'r',{'xb';'sd';'ab';'fs'});

SIMK is a model array containing three closed-loop models, one for each of
the three blending parameter values. Each model in the array represents a
closed loop that is built from the original quarter-car plant model, the nominal
actuator model, and the corresponding synthesized controller.

Simulate and plot the time-domain response of the closed-loop models to the
road disturbance signal.

p1 = lsim(qcar(:,1),roaddist,t);

y1 = lsim(SIMK(1:4,1,1),roaddist,t);

y2 = lsim(SIMK(1:4,1,2),roaddist,t);

y3 = lsim(SIMK(1:4,1,3),roaddist,t);

clf

subplot(221)

plot(t,p1(:,1),'b',t,y1(:,1),'r.',t,y2(:,1),'m.',t,y3(:,1),'k.',t,roaddist,'g')

title('Body travel')

ylabel('x_b (m)')

subplot(222)

plot(t,p1(:,3),'b',t,y1(:,3),'r.',t,y2(:,3),'m.',t,y3(:,3),'k.',t,roaddist,'g')

title('Body acceleration')

ylabel('a_b (m/s^2)')

subplot(223)

plot(t,p1(:,2),'b',t,y1(:,2),'r.',t,y2(:,2),'m.',t,y3(:,2),'k.',t,roaddist,'g')

title('Suspension deflection')

xlabel('Time (s)')

ylabel('s_d (m)')

subplot(224)

plot(t,zeros(size(t)),'b',t,y1(:,4),'r.',t,y2(:,4),'m.',t,y3(:,4),'k.',t,roaddist,'g')

title('Control force')
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xlabel('Time (s)')

ylabel('f_s (N)')

legend('Open-loop','Comfort','Balanced','Suspension','Road Disturbance','location','SouthEast')
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The simulations show that the body acceleration is smallest for the controller
emphasizing passenger comfort. Body acceleration is largest for the controller
emphasizing suspension deflection. The balanced design achieves a good
tradeoff between body acceleration and suspension deflection.

Robust µ Design

So far you designed H∞ controllers that meet the performance objectives for
the nominal actuator model. However, this model is only an approximation of
the true actuator. To make sure that controller performance is maintained
even with model error and uncertainty, you must design the model to have
robust performance. In this part of the example, you use μ-synthesis to design
a controller that achieves robust performance for the entire family of actuator
models that takes uncertainty into account.

Use D-K iteration to synthesize a controller for the quarter-car model with
actuator uncertainty.

[Krob,~,RPmuval] = dksyn(qcaric(:,:,2),nmeas,ncont);

The model qcaric(:,:,2) is the weighted quarter-car model for the uncertain
model that corresponds to the blending variable β = 0.5.

Examine the resulting μ-synthesis controller.

size(Krob)

State-space model with 1 outputs, 2 inputs, and 11 states.

Build the closed-loop model using the robust controller, Krob.

Krob.u = {'sd','ab'};
Krob.y = 'u';
SIMKrob = connect(qcar,Act.Nominal,Krob,'r',{'xb';'sd';'ab';'fs'});

Simulate and plot the nominal time-domain response to a road bump with
the robust controller.

p1 = lsim(qcar(:,1),roaddist,t);
y1 = lsim(SIMKrob(1:4,1),roaddist,t);

clf
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subplot(221)
plot(t,p1(:,1),'b',t,y1(:,1),'r',t,roaddist,'g')
title('Body travel'), ylabel('x_b (m)')

subplot(222)
plot(t,p1(:,3),'b',t,y1(:,3),'r')
title('Body acceleration'), ylabel('a_b (m/s^2)')

subplot(223)
plot(t,p1(:,2),'b',t,y1(:,2),'r')
title('Suspension deflection'), xlabel('Time (s)'), ylabel('s_d (m)')

subplot(224)
plot(t,zeros(size(t)),'b',t,y1(:,4),'r')
title('Control force'), xlabel('Time (s)'), ylabel('f_s (N)')

legend('Open-loop','Robust design','location','SouthEast')
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These responses are similar to those obtained with the balanced H∞ controller.

Examine the effect of the robust controller on variability caused by model
uncertainty. To do so, simulate the response to a road bump for 120 actuator
models randomly sampled from the uncertain model, Act. Perform this
simulation for both the H∞ and the robust controllers, to compare the results.

Compute an uncertain closed-loop model with the balanced H∞ controller, K.
Sample this model, simulate the sampled models, and plot the results.
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CLU = connect(qcar,Act,K(:,:,2),'r',{'xb','sd','ab'});

nsamp = 120;
rng('default');
figure(1)
clf
lsim(usample(CLU,nsamp),'b',CLU.Nominal,'r+',roaddist,t)
title('Nominal "balanced" design')

Compute an uncertain closed-loop model with the balanced robust controller,
Krob. Sample this model, simulate the sampled models, and plot the results.

CLU = connect(qcar,Act,Krob,'r',{'xb','sd','ab'});
figure(2)
clf
lsim(usample(CLU,nsamp),'b',CLU.Nominal,'r+',roaddist,t)
title('Robust "balanced" design')
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The robust controller reduces variability caused by model uncertainty, and
delivers more consistent performance.

Controller Simplification

The robust controller Krob has eleven states. It is often the case that
controllers synthesized with dksyn have high order. You can use the model
reduction functions to find a lower-order controller that achieves the same
level of robust performance. Use reduce to generate approximations of
various orders. Then, use robustperf to compute the robust performance
margin for each reduced-order approximation.

Create an array of reduced-order controllers.
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NS = order(Krob);
StateOrders = 1:NS;
Kred = reduce(Krob,StateOrders);

Krob is a model array containing a reduced-order controller of every order
from 1 up to the original 11 states.

Compute the robust performance margin for each reduced controller.

CLP = lft(qcaric(:,:,2),Kred);
ropt = robustperfOptions('Sensitivity','off','Display','off','Mussv','a');
PM = robustperf(CLP,ropt);

Compare the robust performance of the reduced- and full-order controllers.

plot(StateOrders,[PM.LowerBound],'b-o',...
StateOrders,repmat(1/RPmuval,[1 NS]),'r');

title('Robust performance as a function of controller order')
legend('Reduced order','Full order')
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There is no significant difference in robust performance between the 8th- and
11th-order controllers. Therefore, you can safely replace Krob by its 8th-order
approximation.

Krob8 = Kred(:,:,8);

You now have a simplified controller, Krob8, that provides robust control with
a balance between passenger comfort and handling.
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• “Margins Goal” on page 6-110

• “Poles Goal” on page 6-114

• “Stable Controller Goal” on page 6-118

• “Manage Tuning Goals” on page 6-121

• “Tuning Options” on page 6-123

• “Interpreting Tuning Results” on page 6-126

• “Create Response Plots in Control System Tuner” on page 6-129

• “Examine Tuned Controller Parameters in Control System Tuner” on
page 6-138

• “Compare Performance of Multiple Tuned Controllers” on page 6-140

• “Validate Tuned Controller in Simulink” on page 6-145

• “Create and Configure slTuner Interface to Simulink Model” on page 6-146

• “Time-Domain Specifications” on page 6-152

• “Frequency-Domain Specifications” on page 6-156

• “Loop Shape and Stability Margin Specifications” on page 6-159

• “System Dynamics Specifications” on page 6-162

• “Tune Control System at the Command Line” on page 6-164

• “Tune Controller Against Set of Plant Models” on page 6-165

• “Speed Up Tuning with Parallel Computing Toolbox Software” on page
6-166

• “Validate Tuned Control System at the Command Line” on page 6-168

• “Extract Responses from Tuned MATLAB Model at the Command Line” on
page 6-171
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• “Tuning Control Systems with SYSTUNE” on page 6-173

• “Tuning Control Systems in Simulink” on page 6-178

• “Building Tunable Models” on page 6-183

• “Validating Results” on page 6-190

• “Using Parallel Computing to Accelerate Tuning” on page 6-195
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Automated Tuning of Control Systems

In this section...

“Automated Tuning Overview” on page 6-4

“Choosing an Automated Tuning Approach” on page 6-5

Automated Tuning Overview
The control system tuning tools of Robust Control Toolbox automatically tune
control systems from high-level design goals you specify, such as reference
tracking, disturbance rejection, and stability margins. The software jointly
tunes all the free parameters of your control system regardless of control
system architecture or the number of feedback loops it contains. For example,
the model of the following illustration represents a multiloop control system
for a helicopter.
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This control system includes a number of fixed elements, such as the
helicopter model itself and the roll-off filters. The inner control loop provides
static output feedback for decoupling. The outer loop includes PI controllers
for setpoint tracking. The Robust Control Toolbox tuning tools jointly optimize
the gains in the SOF and PI blocks to meet setpoint tracking, stability margin,
and other requirements that you specify. These tools allow you to specify any
control structure and designate which blocks in your system are tunable.

Control systems are tuned to meet your specific performance and robustness
goals subject to feasibility constraints such as actuator limits, sensor accuracy,
computing power, or energy consumption. The library of design goals lets
you capture these objectives in a form suitable for fast automated tuning.
This library includes standard control objectives such as reference tracking,
disturbance rejection, loop shapes, closed-loop damping, and stability margins.

Choosing an Automated Tuning Approach
You can tune control systems at the MATLAB command line or using the
Control System Tuner App.

Control System Tuner provides an interactive graphical interface for
specifying your design goals and validating the performance of the tuned
control system.
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Use Control System Tuner to tune control systems consisting of any number
of feedback loops, with tunable components having any structure (such as
PID, gain block, or state-space). You can represent your control architecture
in MATLAB as a tunable generalized state-space (genss) model. If you
have Simulink Control Design™ software, you can tune a control system
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represented by a Simulink model. Use the graphical interface to configure
your design goals, examine response plots, and validate your controller design.

The systune command can perform all the same tuning tasks as Control
System Tuner. Tuning at the command line allows you to write scripts for
repeated tuning tasks. systune also provides advanced techniques such
as tuning a controller for multiple plants, or designing gain-scheduled
controllers. To use the command-line tuning tools, you can represent your
control architecture in MATLAB as a tunable generalized state-space (genss)
model. If you have Simulink Control Design software, you can tune a control
system represented by a Simulink model using an slTuner interface. Use the
TuningGoal requirement objects to configure your design goals. Analysis
commands such as getIOTransfer and viewSpec let you examine and
validate the performance of your tuned system.
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Automated Tuning Workflow
Whether you are tuning a control system at the command line or using
Control System Tuner, the basic workflow includes the following steps:

1 Define your control architecture, by building a model of your control system
from fixed-value blocks and blocks with tunable parameters. You can do so
in one of several ways:

• Create a Simulink model of your control system. (Tuning a Simulink
model requires Simulink Control Design software.)

• Use a predefined control architecture available in Control System Tuner.

• At the command line, build a tunable genssmodel of your control system
out of numeric LTI models and tunable control design blocks.

For more information, see “Specify Control Architecture in Control System
Tuner” on page 6-20.

2 Set up your model for tuning.

• In Control System Tuner, identify which blocks of the model you want to
tune. See Model Setup for Control System Tuner.

• If tuning a Simulink model at the command line, create and configure
the slTuner interface to the model. See Setup for Tuning Simulink
Models at the Command Line.

3 Specify your design goals. Use the library of design goals to capture
requirements such as reference tracking, disturbance rejection, stability
margins, and more.

• In Control System Tuner, use the graphical interface to specify design
goals. See “Design Goals”.

• At the command-line, use the TuningGoal requirement objects to specify
your design goals. See at the Command Line.

4 Tune the model. Use the systune command or Control System Tuner to
optimize the tunable parameters of your control system to best meet your
specified design goals.

• For tuning in Control System Tuner, see “Parameter Tuning”.
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• For tuning at the command line, see “Parameter Tuning”.

5 Analyze system response and validate the design. Whether at the command
line or in Control System Tuner, you can plot system responses to examine
any aspects of system performance you need to validate your design.

• For validation in Control System Tuner, see “Analysis and Validation”.

• For validating a tuned Simulink model at the command line, see
“Validation of Tuned Simulink Models”.

• For validating a tuned genssmodel at the command line, see “Validation
of Tuned MATLAB Models”.
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Control System Tuner

In this section...

“Tuned Block Editor” on page 6-10

“Add Signal From the Model” on page 6-13

“Specify Multiple Operating Points” on page 6-17

“Linearization Options” on page 6-18

“Standard feedback configuration” on page 6-18

“Generalized feedback configuration” on page 6-19

Tuned Block Editor
The Tuned Block Editor dialog box lets you view and change the
parametrization of a tunable block. The dialog box contains the following
fields:

• Name — Name of the tunable block.

• Type — Type of parametrization.

• Structure — For a block whose Type is PID, select a configuration
from the Structure drop-down menu, such as P (proportional only), PI
(proportional and integral), or PID (proportional, integral, and derivative).

• Parameter fields. There is one parameter field for each tunable parameter
in the block parametrization. For example, for a PID Controller block
configured for PI structure, the Tuned Block Editor dialog box contains
parameter fields for Kp and Ki. The text boxes display the current value of
each parameter.
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• Change Parametrization — Specify whether the tunable block is
parametrized as a PID controller, state-space model, transfer function,
gain, or a custom parametrization. The parameter fields displayed in the
dialog box depend on the structure you choose.

Edit Parameter Tuning Properties
You can change the current value of a parameter, fix its current value (make
the parameter nontunable), or limit the parameter’s tuning range.

Type in a text boxes to change a current parameter value. Alternatively, click
to use a variable editor to change the current value.

Click to access and edit additional properties of each parameter.
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• Minimum — Minimum value that the parameter can take when the
control system is tuned.

• Maximum — Maximum value that the parameter can take when the
control system is tuned.

• Free — When the value is true, Control System Toolbox tunes the
parameter. To fix the value of the parameter, set Free to false.

For array-valued parameters, you can set these properties independently
for each entry in the array. For example, for a vector-valued gain of length
3, enter [1 10 100] to set the current value of the three gains to 1, 10, and
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100 respectively. Alternatively, click to use a variable editor to specify
such values.

For vector or matrix-valued parameters, you can use the Free parameter
to constrain the structure of the parameter. For example, to restrict a
matrix-valued parameter to be a diagonal matrix, set the current values of the
off-diagonal elements to 0, and set the corresponding entries in Free to false.

Related Examples

• “View and Change Block Parametrization in Control System Tuner” on
page 6-36

Add Signal From the Model
Use this dialog box to add signal locations from a Simulink model to the
specifications for design goals or response plots. For example, When you
create a new response plot using New Plot, the software prompts you to
specify input signals, output signals, and loop-opening locations. Similarly,
when you create a new design goal, the software prompts you for signal
locations at which to apply the design goal. Adding signals to these lists opens
the Add Signal From the Model dialog box.

To add a signal from the Simulink model:

1 In the Simulink model, select the signal you want to add.

The Add Signal From the Model dialog box displays the name of the
currently selected signal.
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2 In the Add Signal From the Model dialog box, click Add Signal. The
Add Signal From the Model dialog box closes, returning you to the plot
or new design goal specification. The signal you selected is added to the
signal list.

Add Bus Element
To select an individual element of a bus signal:

1 In the Simulink model, select the bus signal that contains the signal you
want to add.

The Add Signal From the Model dialog box displays the name of the
currently selected bus. The display also includes signals and nodes within
the bus.
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2 In the Add Signal From the Model dialog box, find the signal that you
want to select. If necessary, expand nodes within the bus.
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Tip For large buses, you can enter search text for filtering element names
in the Filter by name edit box. The name match is case-sensitive.
Additionally, you can enter a MATLAB regular expression.

To modify the filtering options, click adjacent to the Filter by name
edit box.

Filtering Options

• Enable regular expression

MATLAB regular expression for filtering signal names. For example,
entering t$ displays all signals whose names end with a lowercase t
(and their immediate parents).

• Show filtered results as a flat list

Flat list format to display the list of filtered signals.

By default, filtered signals are displayed using a tree format. The flat
list format uses dot notation to reflect the hierarchy of bus signals.

3 When you find the signal you want to add, click to select it. Then click Add
Signal. The Add Signal From the Model dialog box closes, returning
you to the plot or new design goal specification. The signal you selected
is added to the signal list.

4
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Specify Multiple Operating Points
This dialog box allows you to tune your controller for a Simulink model
linearized at multiple operating points. Doing so helps to ensure that your
tuned controller meets your design requirements at a variety of operating
conditions.

The Operating Points list contains all the operating points you have created
for the model in Control System Tuner. Check the Selected box for an
operating point to activate it for tuning.

To reorder operating points in the list, use the Up and Down buttons. Control
System Tuner places linearized models in an array in the order of operating
points in this list. When you use the Apply goal to option to restrict a design
goal to a subset of linearized models, enter the array indices corresponding to
the operating points you want to include.

Related Examples

• “Specify Operating Points for Tuning in Control System Tuner” on page
6-27
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Linearization Options
Use this dialog box to set options for the linearization that Control System
Tuner performs on your Simulink model.

Working Domain
Specify whether to compute linearization in continuous time or discrete time.
If in discrete time, specify a sample time.

Rate Conversions
Specify the method used for rate conversion when linearizing a multirate
system.

• 'Zero-Order Hold'— Yields best match in the time domain for staircase
inputs.

• Tustin— Yields best match in the frequency domain.

• Tustin with Prewarping — Tustin method with best match at a
particular frequency. Enter the prewarping frequency in the text box.

• Upsample when possible, Zero-Order Hold otherwise— Upsamples
discrete states when possible, and uses zero-order hold otherwise.

• Upsample when possible, Tustin otherwise — Upsamples discrete
states when possible, and uses Tustin method otherwise.

• Upsample when possible, Tustin otherwise — Upsamples discrete
states when possible, and uses Tustin method with prewarping otherwise.
Enter the prewarping frequency in the text box.

Standard feedback configuration
Use this dialog box to specify values for the fixed blocks and structures for the
tuned blocks in the standard feedback configuration:
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• Fixed components— The plant model G and the sensor dynamics H are
fixed components. Each of these components defaults to a SISO unity-gain
transfer function.

To change the value of one of these components, check Specify new value
and enter the new value in the text box. The new value can be any numeric
LTI model, such as a tf, zpk, or ss model. If the LTI model is in the
MATLAB workspace, enter the variable name in the text box.

• Tunable components — The controller block C and the filter F are
tunable components. When you tune the control system, Control System
Tuner adjusts the parameters of these components to meet your design
goals. Each of the tunable components defaults to a SISO tunable gain
(an ltiblock.gain block).

To specify a different structure for these blocks, use Control Design Blocks
to create tunable components. For example, to make C a PID controller, use
ltiblock.pid to create a tunable PID block in the MATLAB workspace.
Then check Specify new value for C and enter the variable name in the
text box.

(See “Tunable Models” for more information about creating tunable
components.)

All the components can be MIMO, provided the dimensions are compatible.
For example, if the plant has two inputs and two outputs, then all the
components must have two inputs and two outputs.

Generalized feedback configuration
View and change the custom control architecture and controller structure
represented by a genss model.

The display box lists a summary of the genss model specifying the current
control architecture. The display lists the tunable blocks and their current
values.

To specify a different control architecture that is represented by a genss
model in the MATLAB workspace, enter model’s variable name in the Enter
expression or variable for custom parameterization text box.
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Specify Control Architecture in Control System Tuner

In this section...

“About Control Architecture” on page 6-20

“Predefined Feedback Architecture” on page 6-21

“Arbitrary Feedback Control Architecture” on page 6-22

“Control System Architecture in Simulink ” on page 6-24

About Control Architecture
Control System Tuner lets you tune a control system having any architecture.
Control system architecture defines how your controllers interact with
the system under control. The architecture comprises the tunable control
elements of your system, additional filter and sensor components, the system
under control, and the interconnections between all these elements. For
example, a common control system architecture is the single-loop feedback
configuration of the following illustration:

G is the plant model, and H the sensor dynamics. These are usually the fixed
components of the control system. The prefilter F and feedback controller
C are the tunable elements. Because control systems are so conveniently
expressed in this block diagram form, these elements are referred to as fixed
blocks and tunable blocks.

Control System Tuner gives you several ways to define your control system
architecture:

• Use the predefined feedback structure of the illustration.

• Model any control system architecture in MATLAB by building a
generalized state-space (genss) model from fixed LTI components and
tunable control design blocks.
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• Model your control system in Simulink and specify the blocks to tune in
Control System Tuner (requires Simulink Control Design software).

Predefined Feedback Architecture
If your control system has the single-loop feedback configuration of the
following illustration, use the predefined feedback structure built into Control
System Tuner.

For example, suppose you have a DC motor for which you want to tune a PID
controller. The response of the motor is modeled as G(s) = 1/(s + 1)2. Create a
fixed LTI model representing the plant, and a tunable PID controller model.

Gmot = zpk([],[-1,-1],1);
Cmot = ltiblock.pid('Cmot','PID');

Open Control System Tuner.

controlSystemTuner

Control System Tuner opens, set to tune this default architecture. Next,

specify the values of the blocks in the architecture. Click to open the
Standard feedback configuration dialog box.
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Enter the values for C and G that you created. Control System Tuner reads
these values from the MATLAB workspace. Click OK.

The default value for the sensor dynamics is a fixed unity-gain transfer
function. The default value for the filter F is a tunable gain block.

You can now select blocks to tune, create design goals, and tune the control
system.

Arbitrary Feedback Control Architecture
If your control architecture does not match Control System Tuner’s predefined
control architecture, you can create a generalized state-space (genss) model
with tunable components representing your controller elements. For example,
suppose you want to tune the cascaded control system of the following
illustration, that includes two tunable PID controllers.

.
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Create tunable control design blocks for the controllers, and fixed LTI models
for the plant components, G1 and G2. Also include optional loop-opening
locations x1 and x2. These locations indicate where you can open loops or inject
signals for the purpose of specifying requirements for tuning the system.

G2 = zpk([],-2,3);
G1 = zpk([],[-1 -1 -1],10);

C20 = ltiblock.pid('C2','pi');
C10 = ltiblock.pid('C1','pid');

X1 = loopswitch('X1');
X2 = loopswitch('X2');

Connect these components to build a model of the entire closed-loop control
system.

InnerLoop = feedback(X2*G2*C20,1);
CL0 = feedback(G1*InnerLoop*C10,X1);
CL0.InputName = 'r';
CL0.OutputName = 'y';

CL0 is a tunable genss model. Specifying names for the input and output
channels allows you to identify them when you specify tuning requirements
for the system.

Open Control System Tuner to tune this model.

controlSystemTuner(CL0)

You can now select blocks to tune, create design goals, and tune the control
system.
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Related Examples
• “Building Tunable Models” on page 6-183

• “Specify Blocks to Tune in Control System Tuner” on page 6-34

• “Specify Goals for Interactive Tuning” on page 6-42

Control System Architecture in Simulink
If you have Simulink Control Design software, you can model an arbitrary
control system architecture in a Simulink model and tune the model in
Control System Tuner.

See “Open Control System Tuner for Tuning Simulink Model” on page 6-25.
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Open Control System Tuner for Tuning Simulink Model
To open Control System Tuner for tuning a Simulink model, open the model.
In the Simulink Editor, select Analysis > Control Design > Control
System Tuner.

Each instance of Control System Tuner is linked to the Simulink model from
which it is opened. The title bar of the Control System Tuner window reflects
the name of the associated Simulink model.
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Command-Line Equivalents
At the MATLAB command line, use the controlSystemTuner command
to open Control System Tuner for tuning a Simulink model. For example,
the following command opens Control System Tuner for the model
rct_helico.slx.

controlSystemTuner('rct_helico')

If SLT0 is an slTuner interface to the Simulink model, the following command
opens Control System Tuner using the information in the interface, such as
blocks to tune and analysis points.

controlSystemTuner(SLT0)
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Specify Operating Points for Tuning in Control System
Tuner

In this section...

“About Operating Points in Control System Tuner” on page 6-27

“Linearize at Simulation Snapshot Times” on page 6-28

“Compute Operating Points at Simulation Snapshot Times” on page 6-29

“Compute Steady-State Operating Points” on page 6-31

About Operating Points in Control System Tuner
When you use Control System Tuner with a Simulink model, the software
computes system responses and tunes controller parameters for a linearization
of the model. That linearization can depend on model operating conditions.

By default, Control System Tuner linearizes at the operating point specified
in the model, which comprises the initial state values in the model (the model
initial conditions). You can specify one or more alternate operating points
for tuning the model. Control System Tuner lets you compute two types of
alternate operating points:

• Simulation snapshot time. Control System Tuner simulates the model
for the amount of time you specify, and linearizes using the state values
at that time. Simulation snapshot linearization is useful, for instance,
when you know your model reaches an equilibrium state after a certain
simulation time.

For more information about simulation snapshot linearization, see
“Choosing Between Simulation Snapshot and Operating Point from
Specifications” in the Simulink Control Design documentation.

• Steady-state operating point. Control System Tuner finds a steady-state
operating point at which some specified condition is met (trimming). For
example, if your model represents an automobile motor, you can compute
an operating point at which the motor operates steadily at 2000 rpm.
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For more information about steady-state operating points, see
“Steady-State Operating Point (Trimming)” in the Simulink Control Design
documentation.

Linearize at Simulation Snapshot Times
This example shows how to compute linearizations at one or more simulation
snapshot times.

In the Control System tab, in the Operating Point menu, select Linearize
At.

In the Enter snapshot times to linearize dialog box, specify one or more
simulation snapshot times. Click OK.
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When you are ready to analyze system responses or tune your model, Control
System Tuner computes linearizations at the specified snapshot times. If you
enter multiple snapshot times, Control System Tuner computes an array
of linearized models, and displays analysis plots that reflect the multiple
linearizations in the array. In this case, Control System Tuner also takes into
account all linearizations when tuning parameters. This helps to ensure
that your tuned controller meets your design requirements at a variety of
operating conditions.

Compute Operating Points at Simulation Snapshot
Times
This example shows how to compute operating points at one or more
simulation snapshot times. Doing so stores the operating point within Control
System Tuner. When you later want to analyze or tune the model at a stored
operating point, you can select the stored operating point from the Operating
Point menu.

In the Control System tab, in the Operating Point menu, select Take
simulation snapshot.
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In the Operating Point Snapshots tab, in the Simulation Snapshot
Times text box, enter one or more simulation snapshot times.

Click .

Control System Tuner simulates the model and computes the snapshot
operating points.

Compute additional snapshot operating points if desired. Enter additional
snapshot times and click .
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When you are ready to analyze responses or tune your model, select the
operating point at which you want to linearize the model. In the Control
System tab, in the Operating Point menu, stored operating points are
available.

Compute Steady-State Operating Points
This example shows how to compute a steady-state operating point with
specified conditions. Doing so stores the operating point within Control
System Tuner. When you later want to analyze or tune the model at a stored
operating point, you can select the stored operating point from the Operating
Point menu.

In the Control System tab, in the Operating Point menu, select Trim
model.
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The Trim Model tab opens.

Enter the specifications for the steady-state state values at which you want to
find an operating point. Click Specifications to open the Specifications
for trim dialog box in which you can specify target state values.

For examples showing how to use Specifications for trim to specify the
conditions for a steady-state operating point search, see “Steady-State
Operating Points (Trimming) from Specifications” in the Simulink Control
Design documentation.

When you have entered your state specifications, click . Control System
Tuner finds an operating point that meets the state specifications and stores
it.

When you are ready to analyze responses or tune your model, select the
operating point at which you want to linearize the model. In the Control
System tab, in the Operating Point menu, stored operating points are
available.
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Specify Blocks to Tune in Control System Tuner
To select which blocks of your Simulink model to tune:

1 In the Tuning tab, click Select Blocks. The Select tuned Blocks
dialog opens.

2 Click Add Blocks. Control System Tuner analyzes your model to find
blocks that can be tuned.

3 In the Select Blocks to Tune dialog box, use the nodes in the left panel
to navigate through your model structure to the subsystem that contains
blocks you want to tune. Check Tune? for the blocks you want to tune.
The parameters of blocks you do not check remain constant when you
tune the model.

Tip “Creating Continuous-Time Models”To identify the location of a block
in your model, select the block in the Block Name list and click Highlight
Selected Block.

4 Click OK. The Select tuned blocks dialog box now reflects the blocks
you added.
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To import the current value of a block from your model into the current design
in Control System Tuner, select the block in the Blocks list and click Sync
from Model. Doing so is useful when you have tuned a block in Control
System Tuner, but wish to restore that block to its original value. To store
the current design before restoring a block value, in the Control System
tab, click Store.

Concepts • “How Tuned Simulink Blocks Are Parameterized” on page 6-40
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View and Change Block Parametrization in Control
System Tuner

Every block that you designate for tuning is parametrized in Control System
Tuner.

• When you tune a Simulink model, Control System Tuner automatically
assigns a default parametrization to tunable blocks in the model. The
default parametrization depends on the type of block. For example, a PID
Controller block configured for PI structure is parametrized by proportional
gain and integral gain as follows:

u K K
sp i 
1

.

Kp and Ki are the tunable parameters whose values are optimized to satisfy
your specified design goals.

• When you tune a predefined control architecture or a MATLAB (generalized
state-space) model, you define the parametrization of each tunable block
when you create it at the MATLAB command line. For example, you can
use ltiblock.pid to create a tunable PID block.

Control System Tuner lets you view and change the parametrization of any
block to be tuned. Changing the parametrization can include changing the
structure or current parameter values. You can also designate individual
block parameters fixed (non-tunable) or limit their tuning range.

To view and change the parametrization of a block:

1 In the Tuning tab, click Select Blocks.

2 In the Select tuned blocks dialog box, in the Blocks list, select a block.

3 Click Edit. The Tuned Block Editor dialog box opens, displaying the
current block parametrization.
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4 Use the fields of the Tuned Block Editor dialog box to edit the
parametrization. See “Tuned Block Editor” on page 6-10 for more detailed
information about these fields.

5 When you are finished editing, click OK to update the parametrization.
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See Also “Tuned Block Editor” on page 6-10
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Setup for Tuning Control System Modeled in MATLAB
To model your control architecture in MATLAB for tuning in Control System
Tuner, construct a tunable model of the control system that identifies and
parameterizes its tunable elements. You do so by combining numeric LTI
models of the fixed elements with parametric models of the tunable elements.
The result is a tunable generalized state-space genss model.

Building a tunable genss model for Control System Tuner is the same as
building such a model for tuning at the command line. For information about
building such models, “Setup for Tuning MATLAB Models”.

When you have a tunable genss model of your control system, use the
controlSystemTuner command to open Control System Tuner. For example,
if T0 is the genss model, the following command opens Control System Tuner
for tuning T0:

controlSystemTuner(T0)
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How Tuned Simulink Blocks Are Parameterized

Blocks With Predefined Parameterization
When you tune a Simulink model, either with Control System Tuner or at
the command line through an slTuner interface, the software automatically
assigns a predefined parameterization to certain Simulink blocks. For
example, for a PID Controller block set to the PI controller type, the software
automatically assigns the parameterization Kp + Ki/s, where Kp and Ki are
the tunable parameters. For blocks that have a predefined parameterization,
you can write tuned values back to the Simulink model for validating the
tuned controller.

Blocks that have a predefined parameterization include the following:

Simulink Library Blocks with Predefined
Parametrization

Math Operations Gain

Continuous • State-Space

• Transfer Fcn

• Zero-Pole

• PID Controller

• PID Controller (2 DOF)

Discrete • Discrete State-Space

• Discrete Transfer Fcn

• Discrete Zero-Pole

• Discrete Filter

• Discrete PID Controller

• Discrete PID Controller (2 DOF)

Control System Toolbox LTI System
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Simulink Library Blocks with Predefined
Parametrization

Discretizing (Model Discretizer
Blocks)

• Discretized State-Space

• Discretized Transfer Fcn

• Discretized Zero-Pole

• Discretized LTI System

• Discretized Transfer Fcn (with
initial states)

Simulink Extras/Additional Linear State-Space (with initial outputs)

Blocks Without Predefined Parameterization
You can specify blocks for tuning that do not have a predefined
parameterization. When you do so, the software assigns a state-space
parametrization to such blocks based upon the block linearization. For blocks
that do not have a predefined parameterization, the software cannot write
tuned values back to the block, because there is no clear mapping between
the tuned parameters and the block. To validate a tuned control system that
contains such blocks, you can specify a block linearization in your model using
the value of the tuned parameterization. (See “Specify Linear System for
Block Linearization Using MATLAB Expression” for more information about
specifying block linearization.)

View and Change Block Parametrization
You can view and edit the current parameterization of every block you
designate for tuning.

• In Control System Tuner, see “View and Change Block Parametrization in
Control System Tuner” on page 6-36.

• At the command line, use getBlockParam to view the current block
parametrization. Use setBlockParam to change the block parameterization.
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Specify Goals for Interactive Tuning
This example shows how to specify your design goals for automated tuning in
Control System Tuner.

Use the New Goal menu to create a design goal such as a tracking
requirement, disturbance rejection specification, or minimum stability
margins. Then, when you are ready to tune your control system, useManage
Goals to designate which goals to enforce.

This example creates design goals for tuning the sample model rct_helico.

Choose Design Goal Type

In Control System Tuner, in the Tuning tab, click New Goal. Select
the type of goal you want to create. A design goal dialog box opens in which
you can provide the detailed specifications of your goal. For example, select
Desired step response to make a particular step response of your control
system match a desired response.
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Choose Signal Locations for Evaluating Design Goal

Specify the signal locations in your control system at which the design goal is
evaluated. For example, the step response goal specifies that a step signal
applied at a particular input location yields a desired response at a particular
output location. Use the Step Response Selection section of the dialog box
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to specify these input and output locations. (Other design goal types, such
as loop-shape or stability margins, require you to specify only one location
for evaluation. The procedure for specifying the location is the same as
illustrated here.)

Under Specify step-response inputs, click Add signal to list. A list
of available input locations appears.

If the signal you want to designate as a step-response input is in the list,
click the signal to add it to the step-response inputs. If the signal you want
to designate does not appear, and you are tuning a Simulink model, click
Select signal from model.

The Add signal from the model dialog box contains a list of signals that are
currently selected in the Simulink model. If the signal you want to designate
is listed, select it and click Add signal.
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If the signal you want is not listed, select the signal in the Simulink model
editor. Then, return to the Add signal from the model dialog box and click
Add signal.

The signal you selected now appears in the list of step-response inputs.

Click Add signal to list again to add an additional signal to the
step-response inputs list, if you want to specify a MIMO design goal.
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Similarly, specify the locations at which the step response is measured to
the step-response outputs list. For example, the following configuration
constrains the response to a step input applied at theta-ref and measured at
theta in the Simulink model rct_helico.

Tip To highlight any selected signal in the Simulink model, click . To
remove a signal from the input or output list, click .

Specify Loop Openings

Most design goals can be enforced with loops open at one or more locations in
the control system. Click Add loop opening location to list to specify
such locations for the design goal.
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Define Other Specifications of the Design Goal

The design goal dialog box prompts you to specify other details about the
design goal. For example, to create a step response requirement, you provide
details of the desired step response in the Desired Response area of the
Step Response Goal dialog box. Some design goals have additional options
in an Options section of the dialog box.

For information about the fields for specifying a particular design goal, click
in the design goal dialog box.

Store the Design Goal for Tuning

When you have finished specifying the design goal, click OK in the design goal
dialog box. The new design goal appears in the Tuning Goals section of the
Data Browser. A new figure opens displaying a graphical representation of the
design goal. When you tune your control system, you can refer to this figure
to evaluate graphically how closely the tuned system satisfies the design goal.
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Tip To edit the specifications of the design goal, double-click the design goal
in the Data Browser.

Activate the Design Goal for Tuning

When you have saved your design goal, click New Goal to create
additional design goals.
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When you are ready to tune your control system, click Manage Goals
to select which design goals are active for tuning. In the Manage Tuning
Goals dialog box, Active is checked by default for any new goals. Uncheck
Active for any tuning goal that you do not want enforced.

You can also designate one or more tuning goals as Hard goals. Control
System Tuner attempts to satisfy hard requirements, and comes as close
as possible to satisfying remaining (soft) requirements subject to the hard
constraints. By default, new goals are designated soft goals. Check Hard for
any goal to designate it a hard goal.

For example, if you tune with the following configuration, Control System
Tuner optimizes StepRespGoal1, subject to MarginsGoal1. The design goal
PolesGoal1 is ignored.

Deactivating design goals or designating some goals as soft requirements
can be useful when investigating the tradeoffs between different tuning
requirements. For example, if you do not obtain satisfactory performance with
all your tuning goals active and hard, you might try another design in which
less crucial goals are designated as soft or deactivated entirely.
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Step Response Goal

Purpose
Make the step response from specified inputs to specified outputs closely
match a target response.

Description
Step Response Goal constrains the step response between the specified
signal locations to match the step response of a stable reference system. The
constraint is satisfied when the relative difference between the tuned and
target responses falls within the tolerance you specify. You can use this goal
to constrain a SISO or MIMO response of your control system.

You can specify the reference system for the target step response in terms
of first-order system characteristics (time constant) or second-order system
characteristics (natural frequency and percent overshoot). Alternatively, you
can specify a custom reference system as a numeric LTI model.
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Command-Line Equivalent
When tuning control systems at the command line, use TuningGoal.StepResp
to specify a step response goal.

Step Response Selection
Use this section of the dialog box to specify input, output, and loop-opening
locations for evaluating the design goal.

• Specify step-response inputs

Select one or more signal locations in your model at which to apply the step
input. To constrain a SISO response, select a single-valued input signal.
For example, to constrain the step response from a location named 'u' to a
location named 'y', click Add signal to list and select 'u'. To constrain
a MIMO response, select multiple signals or a vector-valued signal.

• Specify step-response outputs

Select one or more signal locations in your model at which to measure
the response to the step input. To constrain a SISO response, select a
single-valued output signal. For example, to constrain the step response
from a location named 'u' to a location named 'y', click Add signal to
list and select 'y'. To constrain a MIMO response, select multiple signals
or a vector-valued signal. For MIMO systems, the number of outputs must
equal the number of outputs.

• Evaluate step response with the following loops open

Select one or more signal locations in your model at which to open a
feedback loop for the purpose of evaluating this design goal. For example,
to evaluate the design goal with an opening at a location named 'x',
Add signal to list and select 'x'.

For an example showing in more detail how to specify signal locations for a
design goal, see “Specify Goals for Interactive Tuning” on page 6-42.

Desired Response
Use this section of the dialog box to specify the shape of the desired step
response.
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• First-order characteristics

Specify the desired step response (the reference model Href) as a first-order
response with time constant τ:

H
sref 

1

1
/

/
.




Enter the desired value for τ in the Time Constant text box. Specify τ in
the time units of your model.

• Second-order characteristics

Specify the desired step response as a second-order response with time
constant τ, and natural frequency 1/τ.

Enter the desired value for τ in the Time Constant text box. Specify τ in
the time units of your model.

Enter the target overshoot percentage in the Overshoot text box.

The second-order reference system has the form:

H
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The damping constant ζ is related to the overshoot percentage by ζ =
cos(atan2(pi,-log(overshoot/100))).

• Custom reference model

Specify the reference system for the desired step response as a dynamic
system model. such as a tf, zpk, or ss model.

Enter the name of the reference model in the MATLAB workspace in the
LTI model to match text field. Alternatively, enter a command to create
a suitable reference model, such as tf(1,[1 1.414 1]).

The reference model must be stable and must have DC gain of 1 (zero
steady-state error). The model can be continuous or discrete. If the model
is discrete, it can include time delays which are treated as poles at z = 0.

The reference model can be MIMO, provided that it is square and that its
DC singular value (sigma) is 1. Then number of inputs and outputs of the
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reference model must match the dimensions of the inputs and outputs
specified for the step response goal.

For best results, the reference model should also include intrinsic system
characteristics such as non-minimum-phase zeros (undershoot).

If your selected inputs and outputs define a MIMO system and you apply a
SISO reference system, the software attempts to match the diagonal channels
of the MIMO system. In that case, cross-couplings tend to be minimized.

Options
Use this section of the dialog box to specify additional characteristics of the
step response goal.

• Keep % mismatch below

Specify the relative matching error between the actual (tuned) step
response and the target step response. Increase this value to loosen the
matching tolerance. The relative matching error, erel, is defined as:

e
y t y t

y t
rel

ref

ref


    
  

2

2
1

.

y(t) – yref(t) is the response mismatch, and 1 – yref(t) is the step-tracking

error of the target model.  2 denotes the signal energy (2-norm).

• Adjust for step amplitude

For a MIMO design goal, when the choice of units results in a mix of small
and large signals in different channels of the response, this option allows
you to specify the relative amplitude of each entry in the vector-valued
step input. This information is used to scale the off-diagonal terms in the
transfer function from reference to tracking error. This scaling ensures
that cross-couplings are measured relative to the amplitude of each
reference signal.

For example, suppose that design goal is that outputs 'y1' and 'y2'
track reference signals 'r1'and 'r2'. Suppose further that you require
the outputs to track the references with less than 10% cross-coupling. If
r1 and r2 have comparable amplitudes, then it is sufficient to keep the
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gains from r1 to y2 and r2 and y1 below 0.1. However, if r1 is 100 times
larger than r2, the gain from r1 to y2 must be less than 0.001 to ensure
that r1 changes y2 by less than 10% of the r2 target. To ensure this
result, set Adjust for step amplitude to Yes. Then, enter [100,1] in the
Amplitudes of step commands text box. This tells Control System Tuner
to take into account that the first reference signal is 100 times greater
than the second reference signal.

The default value, No , means no scaling is applied.

• Apply goal to

This option applies when you are tuning multiple models at once, such as
an array of models obtained by linearizing a Simulink model at different
operating points. By default, active design goals are enforced for all models.
To enforce a tuning requirement for a subset of models in an array, select
Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the design goal
to the second, third, and fourth models in a model array. To restrict
enforcement of the requirement, enter 2:4 in the Only Models text box.

Algorithms
When you tune a control system, the software converts each design goal into a
normalized scalar value f(x). Here, x is the vector of free (tunable) parameters
in the control system. The software then adjusts the parameter values to
minimize f(x) or to drive f(x) below 1 if the design goal is a hard constraint.

For Step Response Goal, f(x) is given by:

f x
T s x
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T(s,x) is the closed-loop transfer function between the specified inputs and
outputs, evaluated with parameter values x. Href(s) is the reference model.

erel is the relative error (see “Options” on page 6-53).  2 denotes the H2
norm (see norm).
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Related Examples

• “Specify Goals for Interactive Tuning” on page 6-42
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Reference Tracking Goal

Purpose
Make specified outputs track reference inputs with prescribed performance
and fidelity. Limit cross-coupling in MIMO systems.

Description
Tracking Goal constrains tracking between the specified signal locations. The
constraint is satisfied when the maximum relative tracking error falls below
the value you specify at all frequencies. The relative error is the gain from
reference input to tracking error as a function of frequency.

You can specify the maximum error profile directly as a function of frequency.
Alternatively, you can specify the tracking goal a target DC error, peak error,
and response time. These parameters are converted to the following transfer
function that describes the maximum frequency-domain tracking error:

MaxError
PeakError DCError


    



s

s
c
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.

Here, ωc is 2/(response time). The following plot illustrates these relationships
for an example set of values.
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In Control System Tuner, the shaded area on the plot represents the region in
the frequency domain where the tracking goal is not met.

Command-Line Equivalent
When tuning control systems at the command line, use TuningGoal.Tracking
to specify a tracking goal.

Response Selection
Use this section of the dialog box to specify input, output, and loop-opening
locations for evaluating the design goal.

• Specify reference inputs

Select one or more signal locations in your model as reference signals. To
constrain a SISO response, select a single-valued reference signal. For
example, to constrain the response from a location named 'u' to a location
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named 'y', click Add signal to list and select 'u'. To constrain a
MIMO response, select multiple signals or a vector-valued signal.

• Specify reference-tracking outputs

Select one or more signal locations in your model as reference-tracking
outputs. To constrain a SISO response, select a single-valued output signal.
For example, to constrain the step response from a location named 'u' to a
location named 'y', click Add signal to list and select 'y'. To constrain
a MIMO response, select multiple signals or a vector-valued signal. For
MIMO systems, the number of outputs must equal the number of outputs.

• Evaluate tracking performance with the following loops open

Select one or more signal locations in your model at which to open a
feedback loop for the purpose of evaluating this design goal. For example,
to evaluate the design goal with an opening at a location named 'x',
Add signal to list and select 'x'.

For an example showing in more detail how to specify signal locations for a
design goal, see “Specify Goals for Interactive Tuning” on page 6-42.

Tracking Performance
Use this section of the dialog box to specify frequency-domain constraints
on the tracking error.

Response Time, DC Error, and Peak Error
Select this option to specify the tracking error in terms of response time,
percent steady-state error, and peak error across all frequencies. These
parameters are converted to the following transfer function that describes the
maximum frequency-domain tracking error:

MaxError
PeakError DCError
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When you select this option, enter the following parameters in the text boxes:
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• Response Time — Enter the target response time. The tracking
bandwidth is given by ωc = 2/Response Time. Express the target response
time in the time units of your model.

• Steady-state error (%) — Enter the maximum steady-state fractional
tracking error, expressed in percent. For MIMO tracking goals, this
steady-state error applies to all I/O pairs. The steady-state error is the DC
error expressed as a percentage, DCError/100.

• Peak error across frequency (%) — Enter the maximum fractional
tracking error across all frequencies, expressed in percent.

Maximum Error as a Function of Frequency
Select this option to specify the maximum tracking error profile as a function
of frequency.

Enter a SISO numeric LTI model in the text box. For example, you can
specify a smooth transfer function (tf, zpk, or ss model). Alternatively,
you can sketch a piecewise error profile using an frd model. When you do
so, the software automatically maps the error profile to a smooth transfer
function that approximates the desired error profile. For example, to specify a
maximum error of 0.01 below about 1 rad/s, gradually rising to a peak error of
1 at 100 rad/s, enter frd([0.01 0.01 1],[0 1 100]).

For MIMO tracking goals, this error profile applies to all I/O pairs.

Options
Use this section of the dialog box to specify additional characteristics of the
tracking goal.

• Enforce goal in frequency range

Limit the enforcement of the design goal to a particular frequency band.
Specify the frequency band as a row vector of the form [min,max],
expressed in frequency units of your model. For example, to create a design
goal that applies only between 1 and 100 rad/s, enter [1,100]. By default,
the design goal applies at all frequencies for continuous time, and up to the
Nyquist frequency for discrete time.

• Adjust for step amplitude
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For a MIMO design goal, when the choice of units results in a mix of small
and large signals in different channels of the response, this option allows
you to specify the relative amplitude of each entry in the vector-valued
step input. This information is used to scale the off-diagonal terms in the
transfer function from reference to tracking error. This scaling ensures
that cross-couplings are measured relative to the amplitude of each
reference signal.

For example, suppose that design goal is that outputs 'y1' and 'y2'
track reference signals 'r1'and 'r2'. Suppose further that you require
the outputs to track the references with less than 10% cross-coupling. If
r1 and r2 have comparable amplitudes, then it is sufficient to keep the
gains from r1 to y2 and r2 and y1 below 0.1. However, if r1 is 100 times
larger than r2, the gain from r1 to y2 must be less than 0.001 to ensure
that r1 changes y2 by less than 10% of the r2 target. To ensure this
result, set Adjust for step amplitude to Yes. Then, enter [100,1] in the
Amplitudes of step commands text box. This tells Control System Tuner
to take into account that the first reference signal is 100 times greater
than the second reference signal.

The default value, No , means no scaling is applied.

• Apply goal to

This option applies when you are tuning multiple models at once, such as
an array of models obtained by linearizing a Simulink model at different
operating points. By default, active design goals are enforced for all models.
To enforce a tuning requirement for a subset of models in an array, select
Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the design goal
to the second, third, and fourth models in a model array. To restrict
enforcement of the requirement, enter 2:4 in the Only Models text box.

Algorithms
When you tune a control system, the software converts each design goal into a
normalized scalar value f(x). Here, x is the vector of free (tunable) parameters
in the control system. The software then adjusts the parameter values to
minimize f(x) or to drive f(x) below 1 if the design goal is a hard constraint.

For Tracking Goal, f(x) is given by:
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f x T s x I      


1
MaxError

, .

T(s,x) is the closed-loop transfer function between the specified inputs and

outputs, evaluated with parameter values x.   denotes the H∞ norm (see
norm).

Related Examples

• “Specify Goals for Interactive Tuning” on page 6-42
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Overshoot Goal

Purpose
Limit overshoot in the step response from specified inputs to specified outputs.

Description
Overshoot Goal limits the overshoot in the step response between the specified
signal locations. The constraint is satisfied when the overshoot in the tuned
response is less than the target overshoot

The software maps the maximum overshoot to a peak gain constraint,
assuming second-order system characteristics. Therefore, for tuning
higher-order systems, the overshoot constraint is only approximate. In
addition, the Overshoot Goal cannot reliably reduce the overshoot below 5%.

In Control System Tuner, the shaded area on the plot represents the region in
the frequency domain where the overshoot goal is not met.
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Command-Line Equivalent
When tuning control systems at the command line, use TuningGoal.Overshoot
to specify a step response goal.

Response Selection
Use this section of the dialog box to specify input, output, and loop-opening
locations for evaluating the design goal.

• Specify step-response inputs

Select one or more signal locations in your model at which to apply the step
input. To constrain a SISO response, select a single-valued input signal.
For example, to constrain the step response from a location named 'u' to a
location named 'y', click Add signal to list and select 'u'. To constrain
a MIMO response, select multiple signals or a vector-valued signal.

• Specify step-response outputs

Select one or more signal locations in your model at which to measure
the response to the step input. To constrain a SISO response, select a
single-valued output signal. For example, to constrain the step response
from a location named 'u' to a location named 'y', click Add signal to
list and select 'y'. To constrain a MIMO response, select multiple signals
or a vector-valued signal. For MIMO systems, the number of outputs must
equal the number of outputs.

• Evaluate overshoot with the following loops open

Select one or more signal locations in your model at which to open a
feedback loop for the purpose of evaluating this design goal. For example,
to evaluate the design goal with an opening at a location named 'x',
Add signal to list and select 'x'.

For an example showing in more detail how to specify signal locations for a
design goal, see “Specify Goals for Interactive Tuning” on page 6-42.

Options
Use this section of the dialog box to specify additional characteristics of the
overshoot goal.
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• Limit % overshoot to

Enter the maximum percent overshoot. Overshoot Goal cannot reliably
reduce the overshoot below 5%

• Adjust for step amplitude

For a MIMO design goal, when the choice of units results in a mix of small
and large signals in different channels of the response, this option allows
you to specify the relative amplitude of each entry in the vector-valued
step input. This information is used to scale the off-diagonal terms in the
transfer function from reference to tracking error. This scaling ensures
that cross-couplings are measured relative to the amplitude of each
reference signal.

For example, suppose that design goal is that outputs 'y1' and 'y2'
track reference signals 'r1'and 'r2'. Suppose further that you require
the outputs to track the references with less than 10% cross-coupling. If
r1 and r2 have comparable amplitudes, then it is sufficient to keep the
gains from r1 to y2 and r2 and y1 below 0.1. However, if r1 is 100 times
larger than r2, the gain from r1 to y2 must be less than 0.001 to ensure
that r1 changes y2 by less than 10% of the r2 target. To ensure this
result, set Adjust for step amplitude to Yes. Then, enter [100,1] in the
Amplitudes of step commands text box. This tells Control System Tuner
to take into account that the first reference signal is 100 times greater
than the second reference signal.

The default value, No , means no scaling is applied.

• Apply goal to

This option applies when you are tuning multiple models at once, such as
an array of models obtained by linearizing a Simulink model at different
operating points. By default, active design goals are enforced for all models.
To enforce a tuning requirement for a subset of models in an array, select
Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the design goal
to the second, third, and fourth models in a model array. To restrict
enforcement of the requirement, enter 2:4 in the Only Models text box.

Related Examples

• “Specify Goals for Interactive Tuning” on page 6-42
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Disturbance Rejection Goal

Purpose
Attenuate disturbances at particular locations and in particular frequency
bands.

Description
Disturbance Rejection Goal specifies the minimum attenuation of a
disturbance injected at a specified location in a control system.

When you use this design goal, the software attempts to tune the system so
that the attenuation of a disturbance at the specified location exceeds the
minimum attenuation factor you specify. This attenuation factor is the ratio
between the open- and closed-loop sensitivities to the disturbance, and is a
function of frequency.

The following diagram illustrates how the attenuation factor is calculated.
Suppose you specify a location in your control system, y, which is the output
of a block A. In that case, the software calculates the closed-loop sensitivity at
out to a signal injected at in. The software also calculates the sensitivity with
the control loop opened at the location z.

zy
A

To specify a Disturbance Rejection Goal, you specify one or more locations at
which to attenuate disturbance. You also provide the frequency-dependent
minimum attenuation factor as a numeric LTI model. You can achieve
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disturbance attenuation only inside the control bandwidth. The loop gain
must be larger than one for the disturbance to be attenuated (attenuation
factor > 1).

In Control System Tuner, the shaded area on the plot represents the region in
the frequency domain where the disturbance rejection goal is not met.

If you prefer to specify sensitivity to disturbance at a location, rather than
disturbance attenuation, you can use “Sensitivity Goal” on page 6-91.

Command-Line Equivalent
When tuning control systems at the command line, use TuningGoal.Rejection
to specify a disturbance rejection goal.
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Disturbance Scenario
Use this section of the dialog box to specify the signal locations at which
to inject the disturbance. You can also specify loop-opening locations for
evaluating the design goal.

• Inject disturbances at the following locations

Select one or more signal locations in your model at which to measure
the disturbance attenuation. To constrain a SISO response, select a
single-valued location. For example, to attenuate disturbance at a location
named 'y', click Add signal to list and select 'y'. To constrain a
MIMO response, select multiple signals or a vector-valued signal.

• Evaluate disturbance rejection with the following loops open

Select one or more signal locations in your model at which to open a
feedback loop for the purpose of evaluating this design goal. For example,
to evaluate the design goal with an opening at a location named 'x',
Add signal to list and select 'x'.

Rejection Performance
Specify the minimum disturbance attenuation as a function of frequency.

Enter a SISO numeric LTI model whose magnitude represents the desired
attenuation profile as a function of frequency. For example, you can specify a
smooth transfer function (tf, zpk, or ss model). Alternatively, you can sketch
a piecewise minimum disturbance rejection using an frd model. When you do
so, the software automatically maps the profile to a smooth transfer function
that approximates the desired minimum disturbance rejection. For example,
to specify an attenuation factor of 100 (40 dB) below 1 rad/s, that gradually
drops to 1 (0 dB) past 10 rad/s, enter frd([100 100 1 1],[0 1 10 100]).

Options
Use this section of the dialog box to specify additional characteristics of the
disturbance rejection goal.

• Enforce goal in frequency range

Limit the enforcement of the design goal to a particular frequency band.
Specify the frequency band as a row vector of the form [min,max],
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expressed in frequency units of your model. For example, to create a design
goal that applies only between 1 and 100 rad/s, enter [1,100]. By default,
the design goal applies at all frequencies for continuous time, and up to the
Nyquist frequency for discrete time.

Regardless of the limits you enter, a disturbance rejection goal can only be
enforced within the control bandwidth.

• Equalize cross-channel effects

For multiloop or MIMO disturbance rejection requirements, the feedback
channels are automatically rescaled to equalize the off-diagonal (loop
interaction) terms in the open-loop transfer function. Select Off to disable
such scaling and shape the unscaled open-loop response.

• Apply goal to

This option applies when you are tuning multiple models at once, such as
an array of models obtained by linearizing a Simulink model at different
operating points. By default, active design goals are enforced for all models.
To enforce a tuning requirement for a subset of models in an array, select
Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the design goal
to the second, third, and fourth models in a model array. To restrict
enforcement of the requirement, enter 2:4 in the Only Models text box.

Algorithms
When you tune a control system, the software converts each design goal into a
normalized scalar value f(x). Here, x is the vector of free (tunable) parameters
in the control system. The software then adjusts the parameter values to
minimize f(x) or to drive f(x) below 1 if the design goal is a hard constraint.

For Disturbance Rejection Goal, f(x) is given by:

f x W j S j x      


max , .


 


W(jω) is a rational transfer function whose magnitude approximates the
minimum disturbance attenuation that you specify for the design goal. S(jω,x)
is the closed-loop sensitivity function measured at the disturbance location. Ω
is the frequency interval over which the requirement is enforced.
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Related Examples

• “Specify Goals for Interactive Tuning” on page 6-42
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LQR/LQG Goal

Purpose
Minimize or limit Linear-Quadratic-Gaussian (LQG) cost in response to
white-noise inputs

Description
LQR/LQG Goal specifies a tuning requirement for quantifying control
performance as an LQG cost. It is applicable to any control structure, not just
the classical observer structure of optimal LQG control.

The LQG cost is given by:

J = E(z(t)′ QZ z(t)).

z(t) is the system response to a white noise input vector w(t). The covariance
of w(t is given by:

E(w(t)w(t)′) = QW.

The vector w(t) typically consists of external inputs to the system such as
noise, disturbances, or command. The vector z(t) includes all the system
variables that characterize performance, such as control signals, system
states, and outputs. E(x) denotes the expected value of the stochastic variable
x.

The cost function J can also be written as an average over time:

J E
T

z t QZ z t dt
T

T
    








 lim ’ .
1

0

Command-Line Equivalent
When tuning control systems at the command line, use TuningGoal.LQG to
specify an LQG goal.
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Signal Selection
Use this section of the dialog box to specify noise input locations and
performance output locations. Also specify any locations at which to open
loops for evaluating the design goal.

• Specify noise inputs (w)

Select one or more signal locations in your model as noise inputs. To
constrain a SISO response, select a single-valued input signal. For example,
to constrain the LQG cost for a noise input 'u' and performance output
'y', click Add signal to list and select 'u'. To constrain the LQG cost
for a MIMO response, select multiple signals or a vector-valued signal.

• Specify performance outputs (z)

Select one or more signal locations in your model as performance outputs.
To constrain a SISO response, select a single-valued output signal. For
example, to constrain the LQG cost for a noise input 'u' and performance
output 'y', click Add signal to list and select 'y'. To constrain the
LQG cost for a MIMO response, select multiple signals or a vector-valued
signal.

• Evaluate LQG objective with the following loops open

Select one or more signal locations in your model at which to open a
feedback loop for the purpose of evaluating this design goal. For example,
to evaluate the design goal with an opening at a location named 'x',
Add signal to list and select 'x'.

LQG Objective
Use this section of the dialog box to specify the noise covariance and
performance weights for the LQG goal.

• Performance weight Qz

Performance weights, specified as a scalar or a matrix. Use a scalar value
to specify a multiple of the identity matrix. Otherwise specify a symmetric
nonnegative definite matrix. Use a diagonal matrix to independently scale
or penalize the contribution of each variable in z.

The performance weights contribute to the cost function according to:

J = E(z(t)′ QZ z(t)).
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When you use the LQG goal as a hard goal, the software tries to drive
the cost function J < 1. When you use it as a soft goal, the cost function
J is minimized subject to any hard goals and its value is contributed to
the overall objective function. Therefore, select QZ values to properly
scale the cost function so that driving it below 1 or minimizing it yields
the performance you require.

• Noise Covariance Qw

Covariance of the white noise input vector w(t), specified as a scalar or a
matrix. Use a scalar value to specify a multiple of the identity matrix.
Otherwise specify a symmetric nonnegative definite matrix with as many
rows as there are entries in the vector w(t). A diagonal matrix means the
entries of w(t) are uncorrelated.

The covariance of w(t is given by:

E(w(t)w(t)′) = QW.

When you are tuning a control system in discrete time, the LQG goal
assumes:

E(w[k]w[k]′) = QW/Ts.

Ts is the model sample time. This assumption ensures consistent results
with tuning in the continuous-time domain. In this assumption, w[k] is
discrete-time noise obtained by sampling continuous white noise w(t) with
covariance QW. If in your system w[k] is a truly discrete process with
known covariance QWd, use the value Ts*QWd for the QW value.

Options
Use this section of the dialog box to specify additional characteristics of the
LQG goal.

• Apply goal to

This option applies when you are tuning multiple models at once, such as
an array of models obtained by linearizing a Simulink model at different
operating points. By default, active design goals are enforced for all models.
To enforce a tuning requirement for a subset of models in an array, select
Only Models. Then, enter the array indices of the models for which the
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goal is enforced. For example, suppose you want to apply the design goal
to the second, third, and fourth models in a model array. To restrict
enforcement of the requirement, enter 2:4 in the Only Models text box.
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Gain Goal

Purpose
Limit gain of a specified input/output transfer function.

Description
Gain Goal limits the gain from specified inputs to specified outputs. If you
specify multiple inputs and outputs, Gain Goal limits the largest singular
value of the transfer matrix. (See sigma for more information about singular
values.) You can specify a constant maximum gain at all frequencies.
Alternatively, you can specify a frequency-dependent gain profile.

Use Gain Goal, for example, to enforce a custom roll-off rate in a particular
frequency band. To do so, specify a maximum gain profile in that band. You
can also use Gain Goal to enforce disturbance rejection across a particular
input/output pair by constraining the gain to be less than 1.

6-74



Gain Goal

In Control System Tuner, the shaded area on the plot represents the region in
the frequency domain where the maximum gain goal is not met.

By default, Gain Goal constrains a closed-loop gain. To constrain a gain
computed with one or more loops open, specify loop-opening locations in the
I/O Transfer Selection section of the dialog box.

Command-Line Equivalent
When tuning control systems at the command line, use TuningGoal.Gain to
specify a maximum gain goal.

I/O Transfer Selection
Use this section of the dialog box to specify the inputs and outputs of the
transfer function that the design goal constrains. Also specify any locations at
which to open loops for evaluating the design goal.

• Specify input signals

Select one or more signal locations in your model as inputs to the transfer
function that the design goal constrains. To constrain a SISO response,
select a single-valued input signal. For example, to constrain the gain
from a location named 'u' to a location named 'y', click Add signal
to list and select 'u'. To constrain the largest singular value of a MIMO
response, select multiple signals or a vector-valued signal.

• Specify output signals

Select one or more signal locations in your model as outputs of the transfer
function that the design goal constrains. To constrain a SISO response,
select a single-valued output signal. For example, to constrain the gain
from a location named 'u' to a location named 'y', click Add signal
to list and select 'y'. To constrain the largest singular value of a MIMO
response, select multiple signals or a vector-valued signal.

• Compute input/output gain with the following loops open

Select one or more signal locations in your model at which to open a
feedback loop for the purpose of evaluating this design goal. For example,
to evaluate the design goal with an opening at a location named 'x',
Add signal to list and select 'x'.
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For an example showing in more detail how to specify signal locations for a
design goal, see “Specify Goals for Interactive Tuning” on page 6-42.

Options
Use this section of the dialog box to specify additional characteristics of the
gain goal.

• Limit gain to

Enter the maximum gain in the text box. You can specify a scalar value
or a frequency-dependent gain profile. To specify a frequency-dependent
gain profile, enter a SISO numeric LTI model. For example, you can specify
a smooth transfer function (tf, zpk, or ss model). Alternatively, you can
sketch a piecewise maximum gain using an frd model. When you do so, the
software automatically maps the profile to a smooth transfer function that
approximates the desired minimum disturbance rejection. For example, to
specify a gain profile that rolls off at –40dB/decade in the frequency band
from 8 to 800 rad/s, enter frd([0.8 8 800],[10 1 1e-4]).

• Stabilize I/O transfer

By default, the design goal imposes a stability requirement on the
closed-loop transfer function from the specified inputs to outputs, in
addition to the gain constraint. If stability is not required or cannot be
achieved, select No to remove the stability requirement. For example, if the
gain constraint applies to an unstable open-loop transfer function, select No.

• Enforce goal in frequency range

Limit the enforcement of the design goal to a particular frequency band.
Specify the frequency band as a row vector of the form [min,max],
expressed in frequency units of your model. For example, to create a design
goal that applies only between 1 and 100 rad/s, enter [1,100]. By default,
the design goal applies at all frequencies for continuous time, and up to the
Nyquist frequency for discrete time.

• Adjust for signal amplitude

When this option is set to No, the closed-loop transfer function being
constrained is not scaled for relative signal amplitudes. When the choice
of units results in a mix of small and large signals, using an unscaled
transfer function can lead to poor tuning results. Set the option to Yes to
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provide the relative amplitudes of the input signals and output signals of
your transfer function.

For example, suppose the design goal constrains a 2-input, 2-output
transfer function. Suppose further that second input signal to the transfer
function tends to be about 100 times greater than the first signal. In that
case, select Yes and enter [1,100] in the Amplitude of input signals
text box.

Adjusting signal amplitude causes the design goal to be evaluated on the
scaled transfer function Do

–1T(s)Di, where T(s) is the unscaled transfer
function. Do and Di are diagonal matrices with the Amplitude of output
signals and Amplitude of input signals values on the diagonal,
respectively.

• Apply goal to

This option applies when you are tuning multiple models at once, such as
an array of models obtained by linearizing a Simulink model at different
operating points. By default, active design goals are enforced for all models.
To enforce a tuning requirement for a subset of models in an array, select
Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the design goal
to the second, third, and fourth models in a model array. To restrict
enforcement of the requirement, enter 2:4 in the Only Models text box.

Algorithms
When you tune a control system, the software converts each design goal into a
normalized scalar value f(x). Here, x is the vector of free (tunable) parameters
in the control system. The software then adjusts the parameter values to
minimize f(x) or to drive f(x) below 1 if the design goal is a hard constraint.

For Gain Goal, f(x) is given by:

f x D T s x Do i    



1 1

MaxGain
, .

T(s,x) is the closed-loop transfer function between the specified inputs and
outputs, evaluated with parameter values x. MaxGain is the maximum gain
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profile you provide for the gain goal. Do and Di are the scaling matrices

described in “Options” on page 6-76.   denotes the H∞ norm (see norm).

Related Examples

• “Specify Goals for Interactive Tuning” on page 6-42
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Weighted Gain Goal

Purpose
Frequency-weighted gain limit.

Description
Weighted Gain Goal limits the gain of the frequency-weighted transfer
function WL(s)H(s)WR(s), where H(s) is the transfer function between inputs
and outputs you specify. WL(s) and WR(s) are weighting functions that you
can use to emphasize particular frequency bands. Weighted Gain Goal
constrains the peak gain of WL(s)H(s)WR(s) to values less than 1. If H(s) is a
MIMO transfer function, Weighted Gain Goal constrains the largest singular
value of H(s).

By default, Weighted Gain Goal constrains a closed-loop gain. To constrain a
gain computed with one or more loops open, specify loop-opening locations in
the I/O Transfer Selection section of the dialog box.

Command-Line Equivalent
When tuning control systems at the command line, use
TuningGoal.WeightedGain to specify a weighted gain goal.

I/O Transfer Selection
Use this section of the dialog box to specify the inputs and outputs of the
transfer function that the design goal constrains. Also specify any locations at
which to open loops for evaluating the design goal.

• Specify input signals

Select one or more signal locations in your model as inputs to the transfer
function that the design goal constrains. To constrain a SISO response,
select a single-valued input signal. For example, to constrain the gain
from a location named 'u' to a location named 'y', click Add signal
to list and select 'u'. To constrain the largest singular value of a MIMO
response, select multiple signals or a vector-valued signal.

• Specify output signals
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Select one or more signal locations in your model as outputs of the transfer
function that the design goal constrains. To constrain a SISO response,
select a single-valued output signal. For example, to constrain the gain
from a location named 'u' to a location named 'y', click Add signal
to list and select 'y'. To constrain the largest singular value of a MIMO
response, select multiple signals or a vector-valued signal.

• Compute input/output gain with the following loops open

Select one or more signal locations in your model at which to open a
feedback loop for the purpose of evaluating this design goal. For example,
to evaluate the design goal with an opening at a location named 'x',
Add signal to list and select 'x'.

For an example showing in more detail how to specify signal locations for a
design goal, see “Specify Goals for Interactive Tuning” on page 6-42.

Weights
Use the Left weight WL and Right weight WR text boxes to specify the
frequency-weighting functions for the design goal. The design goal ensures
that the gain H(s) from the specified input to output satisfies the inequality:

||WL(s)H(s)WR(s)||∞ < 1.

WL provides the weighting for the output channels of H(s), and WR provides
the weighting for the input channels. You can specify scalar weights or
frequency-dependent weighting. To specify a frequency-dependent weighting,
use a numeric LTI model whose magnitude represents the desired weighting
function. For example, enter tf(1,[1 0.01]) to specify a high weight at low
frequencies that rolls off above 0.01 rad/s.

If the design goal constrains a MIMO transfer function, scalar or SISO
weighting functions automatically expand to any input or output dimension.
You can specify different weights for each channel by specifying MIMO
weighting functions. The dimensions H(s) must be commensurate with the
dimensions of WL and WR. For example, if the constrained transfer function
has two inputs, you can specify diag([1 10]) as WR.
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Options
Use this section of the dialog box to specify additional characteristics of the
weighted gain goal.

• Stabilize I/O transfer

By default, the design goal imposes a stability requirement on the
closed-loop transfer function from the specified inputs to outputs, in
addition to the gain constraint. If stability is not required or cannot be
achieved, select No to remove the stability requirement. For example, if the
gain constraint applies to an unstable open-loop transfer function, select No.

• Enforce goal in frequency range

Limit the enforcement of the design goal to a particular frequency band.
Specify the frequency band as a row vector of the form [min,max],
expressed in frequency units of your model. For example, to create a design
goal that applies only between 1 and 100 rad/s, enter [1,100]. By default,
the design goal applies at all frequencies for continuous time, and up to the
Nyquist frequency for discrete time.

• Apply goal to

This option applies when you are tuning multiple models at once, such as
an array of models obtained by linearizing a Simulink model at different
operating points. By default, active design goals are enforced for all models.
To enforce a tuning requirement for a subset of models in an array, select
Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the design goal
to the second, third, and fourth models in a model array. To restrict
enforcement of the requirement, enter 2:4 in the Only Models text box.

Algorithms
When you tune a control system, the software converts each design goal into a
normalized scalar value f(x). Here, x is the vector of free (tunable) parameters
in the control system. The software then adjusts the parameter values to
minimize f(x) or to drive f(x) below 1 if the design goal is a hard constraint.

For Weighted Gain Goal, f(x) is given by:

f x WL H s x WR     
, .
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H(s,x) is the closed-loop transfer function between the specified inputs and

outputs, evaluated with parameter values x.   denotes the H∞ norm (see
norm).

Related Examples

• “Specify Goals for Interactive Tuning” on page 6-42
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Variance Goal

Purpose
Limit white-noise impact on specified output signals.

Description
Variance Goal imposes a noise attenuation constraint that limits the impact
on specified output signals of white noise applied at specified inputs. The
noise attenuation is measured by the ratio of the noise variance to the output
variance.

For stochastic inputs with a nonuniform spectrum (colored noise), use
“Weighted Variance Goal” on page 6-87 instead.

Command-Line Equivalent
When tuning control systems at the command line, use TuningGoal.Variance
to specify a constraint on noise amplification.

I/O Transfer Selection
Use this section of the dialog box to specify noise input locations and response
outputs. Also specify any locations at which to open loops for evaluating the
design goal.

• Specify stochastic inputs

Select one or more signal locations in your model as noise inputs. To
constrain a SISO response, select a single-valued input signal. For
example, to constrain the gain from a location named 'u' to a location
named 'y', click Add signal to list and select 'u'. To constrain the
noise amplification of a MIMO response, select multiple signals or a
vector-valued signal.

• Specify stochastic outputs

Select one or more signal locations in your model as outputs for computing
response to the noise inputs. To constrain a SISO response, select a
single-valued output signal. For example, to constrain the gain from a
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location named 'u' to a location named 'y', click Add signal to list
and select 'y'. To constrain the noise amplification of a MIMO response,
select multiple signals or a vector-valued signal.

• Compute output variance with the following loops open

Select one or more signal locations in your model at which to open a
feedback loop for the purpose of evaluating this design goal. For example,
to evaluate the design goal with an opening at a location named 'x',
Add signal to list and select 'x'.

Options
Use this section of the dialog box to specify additional characteristics of the
variance goal.

• Attenuate input variance by a factor

Enter the desired noise attenuation from the specified inputs to outputs.
This value specifies the maximum ratio of noise variance to output variance.

When you tune a control system in discrete time, this requirement assumes
that the physical plant and noise process are continuous, and interprets
the desired noise attenuation as a bound on the continuous-time H2 norm.
This ensures that continuous-time and discrete-time tuning give consistent
results. If the plant and noise processes are truly discrete, and you want to
bound the discrete-time H2 norm instead, multiple the desired attenuation

value by Ts . Ts is the sampling time of the model you are tuning.

• Adjust for signal amplitude

When this option is set to No, the closed-loop transfer function being
constrained is not scaled for relative signal amplitudes. When the choice
of units results in a mix of small and large signals, using an unscaled
transfer function can lead to poor tuning results. Set the option to Yes to
provide the relative amplitudes of the input signals and output signals of
your transfer function.

For example, suppose the design goal constrains a 2-input, 2-output
transfer function. Suppose further that second input signal to the transfer
function tends to be about 100 times greater than the first signal. In that
case, select Yes and enter [1,100] in the Amplitude of input signals
text box.
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Adjusting signal amplitude causes the design goal to be evaluated on the
scaled transfer function Do

–1T(s)Di, where T(s) is the unscaled transfer
function. Do and Di are diagonal matrices with the Amplitude of output
signals and Amplitude of input signals values on the diagonal,
respectively.

• Apply goal to

This option applies when you are tuning multiple models at once, such as
an array of models obtained by linearizing a Simulink model at different
operating points. By default, active design goals are enforced for all models.
To enforce a tuning requirement for a subset of models in an array, select
Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the design goal
to the second, third, and fourth models in a model array. To restrict
enforcement of the requirement, enter 2:4 in the Only Models text box.

Algorithms
When you tune a control system, the software converts each design goal into a
normalized scalar value f(x). Here, x is the vector of free (tunable) parameters
in the control system. The software then adjusts the parameter values to
minimize f(x) or to drive f(x) below 1 if the design goal is a hard constraint.

For Variance Goal, f(x) is given by:

f x T s x     Attenuation , .
2

T(s,x) is the closed-loop transfer function from Input to Output.  2 denotes
the H2 norm (see norm).

For tuning discrete-time control systems, f(x) is given by:

f x
T

T z x
s

    Attenuation
, .

2

Ts is the sampling time of the discrete-time transfer function T(z,x).
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Related Examples

• “Specify Goals for Interactive Tuning” on page 6-42
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Weighted Variance Goal

Purpose
Frequency-weighted limit on noise impact on specified output signals.

Description
Weighted Variance Goal limits the noise impact on the outputs of the
frequency-weighted transfer function WL(s)H(s)WR(s), where H(s) is the
transfer function between inputs and outputs you specify. WL(s) and WR(s)
are weighting functions you can use to model a noise spectrum or emphasize
particular frequency bands. Thus, you can use Weighted Variance Goal to
tune the system response to stochastic inputs with a nonuniform spectrum
such as colored noise or wind gusts.

Weighted Variance minimizes the response to noise at the inputs by
minimizing the H2 norm of the frequency-weighted transfer function. The H2
norm measures:

• The total energy of the impulse response, for deterministic inputs to the
transfer function.

• The square root of the output variance for a unit-variance white-noise
input, for stochastic inputs to the transfer function. Equivalently, the H2
norm measures the root-mean-square of the output for such input.

Command-Line Equivalent
When tuning control systems at the command line, use
TuningGoal.WeightedVariance to specify a weighted gain
goal.

I/O Transfer Selection
Use this section of the dialog box to specify noise input locations and response
outputs. Also specify any locations at which to open loops for evaluating the
design goal.

• Specify stochastic inputs
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Select one or more signal locations in your model as noise inputs. To
constrain a SISO response, select a single-valued input signal. For
example, to constrain the gain from a location named 'u' to a location
named 'y', click Add signal to list and select 'u'. To constrain the
noise amplification of a MIMO response, select multiple signals or a
vector-valued signal.

• Specify stochastic outputs

Select one or more signal locations in your model as outputs for computing
response to the noise inputs. To constrain a SISO response, select a
single-valued output signal. For example, to constrain the gain from a
location named 'u' to a location named 'y', click Add signal to list
and select 'y'. To constrain the noise amplification of a MIMO response,
select multiple signals or a vector-valued signal.

• Compute output variance with the following loops open

Select one or more signal locations in your model at which to open a
feedback loop for the purpose of evaluating this design goal. For example,
to evaluate the design goal with an opening at a location named 'x',
Add signal to list and select 'x'.

Weights
Use the Left weight WL and Right weight WR text boxes to specify the
frequency-weighting functions for the design goal.

WL provides the weighting for the output channels of H(s), and WR provides
the weighting for the input channels.

You can specify scalar weights or frequency-dependent weighting. To specify
a frequency-dependent weighting, use a numeric LTI model whose magnitude
represents the desired weighting as a function of frequency. For example,
enter tf(1,[1 0.01]) to specify a high weight at low frequencies that rolls
off above 0.01 rad/s. To limit the response to a nonuniform noise distribution,
enter as WR an LTI model whose magnitude represents the noise spectrum.

If the design goal constrains a MIMO transfer function, scalar or SISO
weighting functions automatically expand to any input or output dimension.
You can specify different weights for each channel by specifying MIMO
weighting functions. The dimensions H(s) must be commensurate with the
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dimensions of WL and WR. For example, if the constrained transfer function
has two inputs, you can specify diag([1 10]) as WR.

Options
Use this section of the dialog box to specify additional characteristics of the
weighted variance goal.

• Apply goal to

This option applies when you are tuning multiple models at once, such as
an array of models obtained by linearizing a Simulink model at different
operating points. By default, active design goals are enforced for all models.
To enforce a tuning requirement for a subset of models in an array, select
Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the design goal
to the second, third, and fourth models in a model array. To restrict
enforcement of the requirement, enter 2:4 in the Only Models text box.

Algorithms
When you tune a control system, the software converts each design goal into a
normalized scalar value f(x). Here, x is the vector of free (tunable) parameters
in the control system. The software then adjusts the parameter values to
minimize f(x) or to drive f(x) below 1 if the design goal is a hard constraint.

For Weighted Variance Goal, f(x) is given by:

f x WL H s x WR    , .
2

H(s,x) is the closed-loop transfer function between the specified inputs and

outputs, evaluated with parameter values x.  2 denotes the H2 norm (see
norm).

For tuning discrete-time control systems, f(x) is given by:

f x
T

WL z H z x WR z
s

        1
2

, .
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Ts is the sampling time of the discrete-time transfer function H(z,x).

Related Examples

• “Specify Goals for Interactive Tuning” on page 6-42
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Sensitivity Goal

Purpose
Limit sensitivity of feedback loops to disturbances.

Description
Sensitivity Goal limits the sensitivity of a feedback loop to disturbances.
You specify the maximum sensitivity as a function of frequency. Constrain
the sensitivity to be smaller than one at frequencies where you need good
disturbance rejection.

To specify a Sensitivity Goal, you specify one or more locations at which
to limit sensitivity. You also provide the frequency-dependent maximum
sensitivity as a numeric LTI model whose magnitude represents the desired
sensitivity as a function of frequency.
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In Control System Tuner, the shaded area on the plot represents the region in
the frequency domain where the sensitivity goal is not met.

If you prefer to specify disturbance attenuation at a particular location,
rather than sensitivity to disturbance, you can use “Disturbance Rejection
Goal” on page 6-65.

Command-Line Equivalent
When tuning control systems at the command line, use
TuningGoal.Sensitivity to specify a disturbance rejection
goal.

Sensitivity Evaluation
Use this section of the dialog box to specify the signal locations at which to
compute the sensitivity to disturbance. You can also specify loop-opening
locations for evaluating the design goal.

• Measure sensitivity at the following locations

Select one or more signal locations in your model at which to measure
the sensitivity to disturbance. To constrain a SISO response, select a
single-valued location. For example, to limit sensitivity at a location named
'y', click Add signal to list and select 'y'. To constrain a MIMO
response, select multiple signals or a vector-valued signal.

• Evaluate disturbance rejection with the following loops open

Select one or more signal locations in your model at which to open a
feedback loop for the purpose of evaluating this design goal. For example,
to evaluate the design goal with an opening at a location named 'x',
Add signal to list and select 'x'.

Sensitivity Bound
Specify the maximum sensitivity as a function of frequency.

Enter a SISO numeric LTI model whose magnitude represents the desired
sensitivity bound as a function of frequency. For example, you can specify a
smooth transfer function (tf, zpk, or ss model). Alternatively, you can sketch
a piecewise maximum sensitivity using an frd model. When you do so, the
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software automatically maps the profile to a smooth transfer function that
approximates the desired sensitivity. For example, to specify a sensitivity
that rolls up at 20 dB per decade and levels off at unity above 1 rad/s, enter
frd([0.01 1 1],[0.001 0.1 100]).

Options
Use this section of the dialog box to specify additional characteristics of the
sensitivity goal.

• Enforce goal in frequency range

Limit the enforcement of the design goal to a particular frequency band.
Specify the frequency band as a row vector of the form [min,max],
expressed in frequency units of your model. For example, to create a design
goal that applies only between 1 and 100 rad/s, enter [1,100]. By default,
the design goal applies at all frequencies for continuous time, and up to the
Nyquist frequency for discrete time.

• Equalize cross-channel effects

For multiloop or MIMO sensitivity requirements, the feedback channels
are automatically rescaled to equalize the off-diagonal (loop interaction)
terms in the open-loop transfer function. Select Off to disable such scaling
and shape the unscaled open-loop response.

• Apply goal to

This option applies when you are tuning multiple models at once, such as
an array of models obtained by linearizing a Simulink model at different
operating points. By default, active design goals are enforced for all models.
To enforce a tuning requirement for a subset of models in an array, select
Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the design goal
to the second, third, and fourth models in a model array. To restrict
enforcement of the requirement, enter 2:4 in the Only Models text box.

Algorithms
When you tune a control system, the software converts each design goal into a
normalized scalar value f(x). Here, x is the vector of free (tunable) parameters
in the control system. The software then adjusts the parameter values to
minimize f(x) or to drive f(x) below 1 if the design goal is a hard constraint.
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For Sensitivity Goal, f(x) is given by:

f x
s

S s x
max

      


1
S

, .

S(s,x) is the sensitivity function of the control system at the specified location,
evaluated with parameter values x. Smax(s) is the frequency-dependent

maximum sensitivity you specify.   denotes the H∞ norm (see norm).

Related Examples

• “Specify Goals for Interactive Tuning” on page 6-42
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Minimum Loop Gain Goal

Purpose
Boost gain of feedback loops at low frequency

Description
Minimum Loop Gain Goal enforces a minimum loop gain in a particular
frequency band. This design goal is useful, for example, for improving
disturbance rejection at a particular location.

Minimum Loop Gain Goal imposes a minimum gain on the open-loop
frequency response (L) at a specified location in your control system. You
specify the minimum open-loop gain as a function of frequency (a minimum
gain profile). For MIMO feedback loops, the specified gain profile is
interpreted as a lower bound on the smallest singular value of L.

When you tune a control system, the minimum gain profile is converted to
a minimum gain constraint on the inverse of the sensitivity function, inv(S)
= (I + L).

The following figure shows a typical specified minimum gain profile (dashed
line) and a resulting tuned loop gain, L (blue line). The green region
represents gain profile values that are forbidden by this requirement. The
figure shows that when L is much larger than 1, imposing a minimum gain on
inv(S) is a good proxy for a minimum open-loop gain.
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Minimum Loop Gain Goal is a constraint on the open-loop gain of the specified
control loop. Thus, the loop gain is computed with the loop open at the
specified location. To compute the gain with loop openings at other points in
the control system, use the Compute response with the following loops
open option in the “Open-Loop Response Selection” on page 6-106 section
of the dialog box.

Minimum Loop Gain Goal and Maximum Loop Gain Goal specify only
low-gain or high-gain constraints in certain frequency bands. When you
use these requirements, the software determines the best loop shape near
crossover. When the loop shape near crossover is simple or well understood
(such as integral action), you can use “Loop Shape Goal” on page 6-105 to
specify that target loop shape.

Command-Line Equivalent
When tuning control systems at the command line, use
TuningGoal.MinLoopGain to specify a minimum loop gain goal.
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Open-Loop Response Selection
Use this section of the dialog box to specify the signal locations at which to
compute the open-loop gain. You can also specify additional loop-opening
locations for evaluating the design goal.

• Shape open-loop response at the following locations

Select one or more signal locations in your model at which to compute
and constrain the open-loop gain. To constrain a SISO response, select a
single-valued location. For example, to constrain the open-loop gain at a
location named 'y', click Add signal to list and select 'y'. To constrain
a MIMO response, select multiple signals or a vector-valued signal.

• Evaluate disturbance rejection with the following loops open

Select one or more signal locations in your model at which to open a
feedback loop for the purpose of evaluating this design goal. For example,
to evaluate the design goal with an opening at a location named 'x',
Add signal to list and select 'x'.

Desired Loop Gain
Use this section of the dialog box to specify the target minimum loop gain.

• Pure integrator K/s

Check to specify a pure integrator shape for the target minimum loop gain.
The software chooses the integrator constant, K, based on the values you
specify for a target minimum gain and frequency. For example, to specify
an integral gain profile with crossover frequency 10 rad/s, enter 1 in the
Choose K to keep gain above text box. Then, enter 10 in the at the
frequency text box. The software chooses the integrator constant such
that the minimum loop gain is 1 at 10 rad/s.

• Other gain profile

Check to specify the minimum gain profile as a function of frequency. Enter
a SISO numeric LTI model whose magnitude represents the desired gain
profile. For example, you can specify a smooth transfer function (tf, zpk, or
ss model). Alternatively, you can sketch a piecewise target loop gain using
an frd model. When you do so, the software automatically maps the profile
to a smooth transfer function that approximates the desired minimum
loop gain. For example, to specify minimum gain of 100 (40 dB) below
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0.1 rad/s, rolling off at a rate of –20 dB/dec at higher frequencies, enter
frd([100 100 10],[0 1e-1 1]).

Options
Use this section of the dialog box to specify additional characteristics of the
minimum loop gain goal.

• Enforce goal in frequency range

Limit the enforcement of the design goal to a particular frequency band.
Specify the frequency band as a row vector of the form [min,max],
expressed in frequency units of your model. For example, to create a design
goal that applies only between 1 and 100 rad/s, enter [1,100]. By default,
the design goal applies at all frequencies for continuous time, and up to the
Nyquist frequency for discrete time.

• Stabilize closed loop system

By default, the design goal imposes a stability requirement on the
closed-loop transfer function from the specified inputs to outputs, in
addition to the gain constraint. If stability is not required or cannot be
achieved, select No to remove the stability requirement. For example, if the
gain constraint applies to an unstable open-loop transfer function, select No.

• Equalize loop interactions

For multi-loop or MIMO loop gain constraints, the feedback channels are
automatically rescaled to equalize the off-diagonal (loop interaction) terms
in the open-loop transfer function. Select Off to disable such scaling and
shape the unscaled open-loop response.

• Apply goal to

This option applies when you are tuning multiple models at once, such as
an array of models obtained by linearizing a Simulink model at different
operating points. By default, active design goals are enforced for all models.
To enforce a tuning requirement for a subset of models in an array, select
Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the design goal
to the second, third, and fourth models in a model array. To restrict
enforcement of the requirement, enter 2:4 in the Only Models text box.
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Algorithms
When you tune a control system, the software converts each design goal into a
normalized scalar value f(x). Here, x is the vector of free (tunable) parameters
in the control system. The software then adjusts the parameter values to
minimize f(x) or to drive f(x) below 1 if the design goal is a hard constraint.

For Minimum Loop Gain Goal, f(x) is given by:

f x W D SDS    



1 .

WS is the minimum loop gain profile. D is a diagonal scaling (for MIMO loops).
S is the sensitivity function at the specified location.

Although S is a closed-loop transfer function, driving f(x) < 1 is equivalent to
enforcing a lower bound on the open-loop transfer function, L, in a frequency
band where the gain of L is greater than 1. To see why, note that S = 1/(1 +
L). For SISO loops, when |L| >> 1, |S | ≈ 1/|L|. Therefore, enforcing the
open-loop minimum gain requirement, |L| > |WS|, is roughly equivalent to
enforcing |WsS| < 1. For MIMO loops, similar reasoning applies, with ||S||
≈ 1/σmin(L), where σmin is the smallest singular value.

Related Examples

• “Specify Goals for Interactive Tuning” on page 6-42
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Maximum Loop Gain Goal

Purpose
Suppress gain of feedback loops at high frequency

Description
Maximum Loop Gain Goal enforces a maximum loop gain in a particular
frequency band. This design goal is useful, for example, for increasing system
robustness to unmodeled dynamics.

Maximum Loop Gain Goal imposes a maximum gain on the open-loop
frequency response (L) at a specified location in your control system. You
specify the maximum open-loop gain as a function of frequency (a maximum
gain profile). For MIMO feedback loops, the specified gain profile is
interpreted as an upper bound on the largest singular value of L.

When you tune a control system, the maximum gain profile is converted
to a maximum gain constraint on the complementary sensitivity function,
T) = L/(I + L).

The following figure shows a typical specified maximum gain profile (dashed
line) and a resulting tuned loop gain, L (blue line). The pink region represents
gain profile values that are forbidden by this requirement. The figure shows
that when L is much smaller than 1, imposing a maximum gain on T is a good
proxy for a maximum open-loop gain.
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Maximum Loop Gain Goal is a constraint on the open-loop gain of the
specified control loop. Thus, the loop gain is computed with the loop open at
the specified location. To compute the gain with loop openings at other points
in the control system, use the Compute response with the following
loops open option in the ******* section of the dialog box.

Maximum Loop Gain Goal and Minimum Loop Gain Goal specify only
high-gain or low-gain constraints in certain frequency bands. When you
use these requirements, the software determines the best loop shape near
crossover. When the loop shape near crossover is simple or well understood
(such as integral action), you can use “Loop Shape Goal” on page 6-105 to
specify that target loop shape.
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Command-Line Equivalent
When tuning control systems at the command line, use
TuningGoal.MaxLoopGain to specify a minimum loop gain goal.

Open-Loop Response Selection
Use this section of the dialog box to specify the signal locations at which to
compute the open-loop gain. You can also specify additional loop-opening
locations for evaluating the design goal.

• Shape open-loop response at the following locations

Select one or more signal locations in your model at which to compute
and constrain the open-loop gain. To constrain a SISO response, select a
single-valued location. For example, to constrain the open-loop gain at a
location named 'y', click Add signal to list and select 'y'. To constrain
a MIMO response, select multiple signals or a vector-valued signal.

• Evaluate disturbance rejection with the following loops open

Select one or more signal locations in your model at which to open a
feedback loop for the purpose of evaluating this design goal. For example,
to evaluate the design goal with an opening at a location named 'x',
Add signal to list and select 'x'.

Desired Loop Gain
Use this section of the dialog box to specify the target maximum loop gain.

• Pure integrator K/s

Check to specify a pure integrator shape for the target maximum loop gain.
The software chooses the integrator constant, K, based on the values you
specify for a target maximum gain and frequency. For example, to specify
an integral gain profile with crossover frequency 10 rad/s, enter 1 in the
Choose K to keep gain below text box. Then, enter 10 in the at the
frequency text box. The software chooses the integrator constant such
that the maximum loop gain is 1 at 10 rad/s.

• Other gain profile

Check to specify the maximum gain profile as a function of frequency.
Enter a SISO numeric LTI model whose magnitude represents the desired
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gain profile. For example, you can specify a smooth transfer function (tf,
zpk, or ss model). Alternatively, you can sketch a piecewise target loop
gain using an frd model. When you do so, the software automatically maps
the profile to a smooth transfer function that approximates the desired
maximum loop gain. For example, to specify maximum gain of 100 (40 dB)
below 0.1 rad/s, rolling off at a rate of –20 dB/dec at higher frequencies,
enter frd([100 100 10],[0 1e-1 1]).

Options
Use this section of the dialog box to specify additional characteristics of the
maximum loop gain goal.

• Enforce goal in frequency range

Limit the enforcement of the design goal to a particular frequency band.
Specify the frequency band as a row vector of the form [min,max],
expressed in frequency units of your model. For example, to create a design
goal that applies only between 1 and 100 rad/s, enter [1,100]. By default,
the design goal applies at all frequencies for continuous time, and up to the
Nyquist frequency for discrete time.

• Stabilize closed loop system

By default, the design goal imposes a stability requirement on the
closed-loop transfer function from the specified inputs to outputs, in
addition to the gain constraint. If stability is not required or cannot be
achieved, select No to remove the stability requirement. For example, if the
gain constraint applies to an unstable open-loop transfer function, select No.

• Equalize loop interactions

For multi-loop or MIMO loop gain constraints, the feedback channels are
automatically rescaled to equalize the off-diagonal (loop interaction) terms
in the open-loop transfer function. Select Off to disable such scaling and
shape the unscaled open-loop response.

• Apply goal to

This option applies when you are tuning multiple models at once, such as
an array of models obtained by linearizing a Simulink model at different
operating points. By default, active design goals are enforced for all models.
To enforce a tuning requirement for a subset of models in an array, select
Only Models. Then, enter the array indices of the models for which the
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goal is enforced. For example, suppose you want to apply the design goal
to the second, third, and fourth models in a model array. To restrict
enforcement of the requirement, enter 2:4 in the Only Models text box.

Algorithms
When you tune a control system, the software converts each design goal into a
normalized scalar value f(x). Here, x is the vector of free (tunable) parameters
in the control system. The software then adjusts the parameter values to
minimize f(x) or to drive f(x) below 1 if the design goal is a hard constraint.

For Maximum Loop Gain Goal, f(x) is given by:

f x W D TDT    
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WT is the reciprocal of the maximum loop gain profile. D is a diagonal scaling
(for MIMO loops). T is the complementary sensitivity function at the specified
location.

Although T is a closed-loop transfer function, driving f(x) < 1 is equivalent to
enforcing an upper bound on the open-loop transfer, L, in a frequency band
where the gain of L is less than one. To see why, note that T = L/(I + L). For
SISO loops, when |L| << 1, |T| ≈ |L|. Therefore, enforcing the open-loop
maximum gain requirement, |L| < 1/|WT|, is roughly equivalent to enforcing
|WTT| < 1. For MIMO loops, similar reasoning applies, with ||T|| ≈ σmax(L),
where σmax is the largest singular value.

Related Examples

• “Specify Goals for Interactive Tuning” on page 6-42
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Loop Shape Goal

Purpose
Shape open-loop response of feedback loops.

Description
Loop Shape Goal specifies a target gain profile (gain as a function of frequency)
of an open-loop response. Loop Shape Goal constrains the open-loop,
point-to-point response (L) at a specified location in your control system.

When you tune a control system, the target open-loop gain profile is converted
into constraints on the inverse sensitivity function inv(S) = (I + L) and the
complementary sensitivity function T = 1–S. These constraints are illustrated
for a representative tuned system in the following figure.
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Where L is much greater than 1, a minimum gain constraint on inv(S) (green
shaded region) is equivalent to a minimum gain constraint on L. Similarly,
where L is much smaller than 1, a maximum gain constraint on T (red shaded
region) is equivalent to a maximum gain constraint on L. The gap between
these two constraints is twice the crossover tolerance, which specifies the
frequency band where the loop gain can cross 0 dB.

For multi-input, multi-output (MIMO) control systems, values in the gain
profile greater than 1 are interpreted as minimum performance requirements.
Such values are lower bounds on the smallest singular value of the open-loop
response. Gain profile values less than one are interpreted as minimum
roll-off requirements, which are upper bounds on the largest singular value
of the open-loop response. For more information about singular values, see
sigma.

Use Loop Shape Goal when the loop shape near crossover is simple or well
understood (such as integral action). To specify only high gain or low gain
constraints in certain frequency bands, use “Minimum Loop Gain Goal” on
page 6-95 or “Maximum Loop Gain Goal” on page 6-100. When you do so, the
software determines the best loop shape near crossover.

Open-Loop Response Selection
Use this section of the dialog box to specify the signal locations at which to
compute the open-loop gain. You can also specify additional loop-opening
locations for evaluating the design goal.

• Shape open-loop response at the following locations

Select one or more signal locations in your model at which to compute
and constrain the open-loop gain. To constrain a SISO response, select a
single-valued location. For example, to constrain the open-loop gain at a
location named 'y', click Add signal to list and select 'y'. To constrain
a MIMO response, select multiple signals or a vector-valued signal.

• Evaluate disturbance rejection with the following loops open

Select one or more signal locations in your model at which to open a
feedback loop for the purpose of evaluating this design goal. For example,
to evaluate the design goal with an opening at a location named 'x',
Add signal to list and select 'x'.
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Desired Loop Shape
Use this section of the dialog box to specify the target loop shape.

• Pure integrator wc/s

Check to specify a pure integrator and crossover frequency for the target
loop shape. For example, to specify an integral gain profile with crossover
frequency 10 rad/s, enter 10 in the Crossover frequency wc text box.

• Other gain profile

Check to specify the target loop shape as a function of frequency. Enter a
SISO numeric LTI model whose magnitude represents the desired gain
profile. For example, you can specify a smooth transfer function (tf, zpk,
or ss model). Alternatively, you can sketch a piecewise target loop shape
using an frd model. When you do so, the software automatically maps the
profile to a smooth transfer function that approximates the desired loop
shape. For example, to specify a target loop shape of 100 (40 dB) below
0.1 rad/s, rolling off at a rate of –20 dB/dec at higher frequencies, enter
frd([100 100 10],[0 1e-1 1]).

Options
Use this section of the dialog box to specify additional characteristics of the
loop shape goal.

• Enforce loop shape within

Specify the tolerance in the location of the crossover frequency, in decades.
For example, to allow gain crossovers within half a decade on either side of
the target crossover frequency, enter 0.5. Increase the crossover tolerance
to increase the ability of the tuning algorithm to enforce the target loop
shape for all loops in a MIMO control system.

• Enforce goal in frequency range

Limit the enforcement of the design goal to a particular frequency band.
Specify the frequency band as a row vector of the form [min,max],
expressed in frequency units of your model. For example, to create a design
goal that applies only between 1 and 100 rad/s, enter [1,100]. By default,
the design goal applies at all frequencies for continuous time, and up to the
Nyquist frequency for discrete time.

• Stabilize closed loop system
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By default, the design goal imposes a stability requirement on the
closed-loop transfer function from the specified inputs to outputs, in
addition to the gain constraint. If stability is not required or cannot be
achieved, select No to remove the stability requirement. For example, if the
gain constraint applies to an unstable open-loop transfer function, select No.

• Equalize loop interactions

For multi-loop or MIMO loop gain constraints, the feedback channels are
automatically rescaled to equalize the off-diagonal (loop interaction) terms
in the open-loop transfer function. Select Off to disable such scaling and
shape the unscaled open-loop response.

• Apply goal to

This option applies when you are tuning multiple models at once, such as
an array of models obtained by linearizing a Simulink model at different
operating points. By default, active design goals are enforced for all models.
To enforce a tuning requirement for a subset of models in an array, select
Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the design goal
to the second, third, and fourth models in a model array. To restrict
enforcement of the requirement, enter 2:4 in the Only Models text box.

Algorithms
When you tune a control system, the software converts each design goal into a
normalized scalar value f(x). Here, x is the vector of free (tunable) parameters
in the control system. The software then adjusts the parameter values to
minimize f(x) or to drive f(x) below 1 if the design goal is a hard constraint.

For Loop Shape Goal, f(x) is given by:

f x
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S = D–1[I – L(s,x)]–1D is the scaled sensitivity function.

L(s,x) is the open-loop response being shaped.
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D is an automatically-computed loop scaling factor. (If Equalize loop
interactions is set to Off, then D = I.)

T = S – I is the complementary sensitivity function.

WS and WT are weighting functions derived from the specified loop shape.

Related Examples

• “Specify Goals for Interactive Tuning” on page 6-42
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Margins Goal

Purpose
Enforce specified gain and phase margins.

Description
Margins Goal enforces specified gain and phase margins on a SISO or MIMO
feedback loop. For MIMO feedback loops, the gain and phase margins are
based on the notion of disk margins, which guarantee stability for concurrent
gain and phase variations in all feedback channels. See loopmargin for more
information about disk margins.

In Control System Tuner, the shaded area on the plot represents the region in
the frequency domain where the margins goal is not met.
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Command-Line Equivalent
When tuning control systems at the command line, use TuningGoal.Margins
to specify a stability margin goal.

Feedback Loop Selection
Use this section of the dialog box to specify the signal locations at which to
measure stability margins. You can also specify additional loop-opening
locations for evaluating the design goal.

• Measure stability margins at the following locations

Select one or more signal locations in your model at which to compute
and constrain the stability margins. To constrain a SISO loop, select a
single-valued location. For example, to constrain the stability margins
at a location named 'y', click Add signal to list and select 'y'. To
constrain a MIMO loop, select multiple signals or a vector-valued signal.

• Evaluate disturbance rejection with the following loops open

Select one or more signal locations in your model at which to open a
feedback loop for the purpose of evaluating this design goal. For example,
to evaluate the design goal with an opening at a location named 'x',
Add signal to list and select 'x'.

Desired Margins
Use this section of the dialog box to specify the minimum gain and phase
margins for the feedback loop.

• Gain margin (dB)

Enter the required minimum gain margin for the feedback loop as a scalar
value expressed in dB.

• Phase margin (degrees)

Enter the required minimum phase margin for the feedback loop as a
scalar value expressed in degrees.

For MIMO feedback loops, the gain and phase margins are based on the notion
of disk margins, which guarantee stability for concurrent gain and phase
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variations in all feedback channels. See loopmargin for more information
about disk margins.

Options
Use this section of the dialog box to specify additional characteristics of the
stability margin goal.

• Enforce goal in frequency range

Limit the enforcement of the design goal to a particular frequency band.
Specify the frequency band as a row vector of the form [min,max],
expressed in frequency units of your model. For example, to create a design
goal that applies only between 1 and 100 rad/s, enter [1,100]. By default,
the design goal applies at all frequencies for continuous time, and up to the
Nyquist frequency for discrete time.

For best results with stability margin requirements, pick a frequency band
extending about one decade on each side of the gain crossover frequencies.

• D scaling order

This value controls the order (number of states) of the scalings involved in
computing MIMO stability margins. Static scalings (scaling order 0) are
used by default. Increasing the order may improve results at the expense
of increased computations. If the stability margin plot shows a large gap
between the optimized and actual margins, consider increasing the scaling
order.

• Apply goal to

This option applies when you are tuning multiple models at once, such as
an array of models obtained by linearizing a Simulink model at different
operating points. By default, active design goals are enforced for all models.
To enforce a tuning requirement for a subset of models in an array, select
Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the design goal
to the second, third, and fourth models in a model array. To restrict
enforcement of the requirement, enter 2:4 in the Only Models text box.
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Algorithms
When you tune a control system, the software converts each design goal into a
normalized scalar value f(x). Here, x is the vector of free (tunable) parameters
in the control system. The software then adjusts the parameter values to
minimize f(x) or to drive f(x) below 1 if the design goal is a hard constraint.

For Margins Goal, f(x) is given by:

f x S I    2  .

S = D–1[I – L(s,x)]–1D is the scaled sensitivity function.

L(s,x) is the open-loop response being shaped.

D is an automatically-computed loop scaling factor.

α is a scalar parameter computed from the specified gain and phase margin.

Related Examples

• “Specify Goals for Interactive Tuning” on page 6-42
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Poles Goal

Purpose
Constrain the dynamics of the closed-loop system, specified feedback loops, or
specified open-loop configurations.

Description
Poles Goal constrains the dynamics of your entire control system or of
specified feedback loops of your control system. Constraining the dynamics of
a feedback loop means constraining the dynamics of the sensitivity function
measured at a specified location in the control system.

Poles Goal imposes an implicit stability constraint on the control system or
sensitivity function of the specified loop. You can also specify finite minimum
decay rate or minimum damping for the poles in the control system or
specified loop. You can specify a maximum natural frequency for these poles,
to eliminate fast dynamics in the tuned control system.
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In Control System Tuner, the shaded area on the plot represents the region in
the frequency domain where the pole location constraints are not met.

Poles Goal only constrains dynamics that are in a feedback loop with the
tuned elements of the control system. Poles Goal does not constrain dynamics
that are independent of the tuned elements (such as weighting functions or
open-loop dynamics). For example, consider the following control system,
in which C is a tunable component.
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Tuning this control system with a TuningGoal.Poles requirement constrains
the dynamics of the feedback loop containing G and C. However, the
requirement does not constrain the dynamics of F or the weighting function, W.

To constrain dynamics or ensure stability of a single tunable component of the
control system, use “Stable Controller Goal” on page 6-118.

Command-Line Equivalent
When tuning control systems at the command line, use TuningGoal.Poles to
specify a disturbance rejection goal.

Feedback Configuration
Use this section of the dialog box to specify the portion of the control system
for which you want to constrain dynamics. You can also specify loop-opening
locations for evaluating the design goal.

• Entire system

Select this option to constrain pole locations for the entire control system.
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• Specific feedback loop(s)

Select this option to specify one or more feedback loops to constrain. Specify
a feedback loop by selecting a signal location in your control system. Poles
Goal constrains the dynamics of the sensitivity function measured at that
location. To constrain the dynamics of a SISO loop, select a single-valued
location. For example, to constrain the dynamics of the sensitivity function
measured at a location named 'y', click Add signal to list and select
'y'. To constrain the dynamics of a MIMO loop, select multiple signals or a
vector-valued signal.

• Evaluate disturbance rejection with the following loops open

Select one or more signal locations in your model at which to open a
feedback loop for the purpose of evaluating this design goal. For example,
to evaluate the design goal with an opening at a location named 'x',
Add signal to list and select 'x'.

Pole Location
Use this section of the dialog box to specify the limits on pole locations.

• Minimum decay rate

Enter the target minimum decay rate for the system poles. Closed-loop
system poles that depend on the tunable parameters are constrained to
satisfy Re(s) < -MinDecay. This constraint helps ensure stable dynamics
in the tuned system.

When this value is zero, Poles Goal imposes an implicit constraint on
stability of the system poles, but does not impose a finite minimum decay
rate.

• Minimum damping

Enter the target minimum damping of closed-loop poles of tuned system,
as a value between 0 and 1. Closed-loop system poles that depend on the
tunable parameters are constrained to satisfy Re(s) < -MinDamping*|s|.

When this value is zero, Poles Goal imposes an implicit constraint on the
stability of system poles, but does not impose a finite minimum damping.

• Maximum natural frequency
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Enter the target maximum natural frequency of poles of tuned system, in
the units of the control system model you are tuning. When you tune the
control system using this requirement, closed-loop system poles that depend
on the tunable parameters are constrained to satisfy |s| < MaxFrequency.
This constraint prevents fast dynamics in the control system.

When this value is Inf, Poles Goal imposes an implicit constraint on the
stability of system poles, but does not impose a finite natural frequency.

Options
Use this section of the dialog box to specify additional characteristics of the
poles goal.

• Enforce goal in frequency range

Limit the enforcement of the design goal to a particular frequency band.
Specify the frequency band as a row vector of the form [min,max],
expressed in frequency units of your model. For example, to create a design
goal that applies only between 1 and 100 rad/s, enter [1,100]. By default,
the design goal applies at all frequencies for continuous time, and up to the
Nyquist frequency for discrete time.

The Poles Goal applies only to poles with natural frequency within the
range you specify.

• Apply goal to

This option applies when you are tuning multiple models at once, such as
an array of models obtained by linearizing a Simulink model at different
operating points. By default, active design goals are enforced for all models.
To enforce a tuning requirement for a subset of models in an array, select
Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the design goal
to the second, third, and fourth models in a model array. To restrict
enforcement of the requirement, enter 2:4 in the Only Models text box.

Related Examples

• “Specify Goals for Interactive Tuning” on page 6-42
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Stable Controller Goal

Purpose
Constrain the dynamics of a specified tunable block in the tuned control
system

Description
Stable Controller Goal constrains the dynamics of a tunable block in your
control system model. Stable Controller Goal imposes an implicit stability
constraint on the specified block. You can also specify finite minimum decay
rate or a maximum natural frequency for the poles of the block, to eliminate
fast dynamics in the tunable block.

In Control System Tuner, the shaded area on the plot represents the region in
the frequency domain where the pole location constraints are not met.
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To constrain dynamics or ensure stability of an entire control system or a
feedback loop in the control system, use “Poles Goal” on page 6-114.

Command-Line Equivalent
When tuning control systems at the command line, use
TuningGoal.StableController to specify a disturbance rejection
goal.

Constrain Dynamics of Tuned Block
From the drop-down menu, select the tuned block in your control system to
which to apply the Stable Controller Goal.

If the block you want to constrain is not in the list, add it to the list of blocks
to tune. In Control System Tuner, in the Tuning tab, click Select Blocks.
For more information about adding tuned blocks, see “Specify Blocks to Tune
in Control System Tuner” on page 6-34.

Keep Poles Inside the Following Region
Use this section of the dialog box to specify the limits on pole locations.

• Minimum decay rate

Enter the target minimum decay rate for the poles of the tunable block.
Poles of the block are constrained to satisfy Re(s) < -MinDecay. This
constraint helps ensure stable dynamics in the tuned block.

When this value is zero, Stable Controller Goal imposes an implicit
constraint on stability of the block poles, but does not impose a finite
minimum decay rate.

• Maximum natural frequency

Enter the target maximum natural frequency of poles of the tunable block,
in the units of the control system model you are tuning. Poles of the block
are constrained to satisfy |s| < MaxFrequency. This constraint prevents
fast dynamics in the tunable block.
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When this value is Inf, Stable Controller Goal imposes an implicit
constraint on the stability of the block poles, but does not impose a finite
natural frequency.

Related Examples

• “Specify Goals for Interactive Tuning” on page 6-42
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Manage Tuning Goals
Control System Tuner lets you designate one or more design goals as hard
goals. This designation gives you a way to differentiate must-have goals from
nice-to-have design goals. Control System Tuner attempts to satisfy hard
requirements by driving their associated cost functions below 1. Subject
to that constraint, the software comes as close as possible to satisfying
remaining (soft) requirements. For best results, make sure you can obtain
a reasonable design with all goals treated as soft goals before attempting to
enforce any goal as a hard constraint.

By default, new goals are designated soft goals. In the Tuning tab, click

Manage Goals to open the Manage tuning goals dialog box. Check
Hard for any goal to designate it a hard goal.

You can also designate any design goal as inactive for tuning. In this case
the software ignores the design goal entirely. Use this dialog box to select
which design goals are active when you tune the control system. Active is
checked by default for any new goals. Uncheck Active for any design goal
that you do not want enforced.

For example, if you tune with the following configuration, Control System
Tuner optimizes StepRespGoal1, subject to MarginsGoal1. The design goal
PolesGoal1 is ignored.
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All tuning goals you have created in the Control System Tuner session are
listed in the dialog box. To edit an existing tuning goal, select it in the list and
click Edit. To delete a tuning goal from the list, select it and click Remove.

To add more tuning goals to the list, in Control System Tuner, in the Tuning
tab, click New Goal. For more information about creating tuning goals,
see “Specify Goals for Interactive Tuning” on page 6-42.
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Tuning Options

To specify options for the tuning algorithm, in the Tuning tab, click
Tuning Options. The Tuning Options dialog box lets you specify the
following options:

Optimization

• Use multiple starting points

Control System Tuner tunes by finding a local minimum of a gain
minimization problem. When this option is unchecked, the software
performs a single optimization run starting from the initial values of the
tunable parameters. To increase the likelihood of finding parameter values
that meet your design requirements, you can perform multiple optimization
runs that begin from randomized parameter values.

To do so, check this option, and enter a number of optimization runs to
perform in the Number of randomized starts text box. Control System
Tuner selects the best design that results from the multiple optimization
runs.

• Run multiple starts in parallel

Check this option enable parallel processing by distributing randomized
starts among workers in a parallel pool. If there is an available
parallel pool, then the software performs independent optimization runs
concurrently among workers in that pool. If no parallel pool is available,
one of the following occurs:

- If Automatically create a parallel pool is selected in your Parallel
Computing Toolbox™ preferences, then the software starts a parallel
pool using the settings in those preferences.

- If Automatically create a parallel pool is not selected in
your preferences, then the software performs the optimization runs
successively, without parallel processing.

If Automatically create a parallel pool is not selected in your
preferences, you can manually start a parallel pool using parpool before
running the tuning command.

Using parallel processing requires Parallel Computing Toolbox software.
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• Stop when soft goal values less than

Check this box to specify a custom target value for soft constraints. The
optimization stops when the largest soft constraint value falls below this
target value, assuming it is possible to find parameter values that achieve
this result. When the box is unchecked, the software attempts to minimize
the soft goals subject to the hard constraints.

• Show report with

When this box is checked, Control System Tuner displays a tuning report
each time you tune a model. Select the level of detail to display in the
report.

- Final summary — Displays tuning summary containing the best
achieved value for the hard goals and soft goals. Also displays hard goal,
soft goal, and number of iterations for each independent optimization
run.

- Intermediate results— In addition to the tuning summary, displays
the results of each optimization subproblem.

When you designate some design goals as hard goals, the software
divides the optimization into subproblems. First, the software attempts
to satisfy the hard goals. Then, it attempts to minimize the soft goals,
subject to remaining in a parameter-space region in which the hard
goals are satisfied. When you select Intermediate results, the report
includes the results of each of these subproblems.

- Detailed progress — Displays the result of every iteration in each
optimization run.

Stabilization

• Minimum decay rate

Specify the minimum decay rate for closed-loop poles in the tuned system.

Constrains all closed-loop pole locations |p| to satisfy Re(p) < -MinDecay.
Adjust the minimum value if the optimization cannot meet the default
minimum value, or if the default minimum value conflicts with other
requirements. For specifying other constraints on the closed-loop pole
locations, use “Poles Goal” on page 6-114.

Default: 10–7
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Solver Parameters

• Maximum iterations

Specify the maximum number of iterations in each optimization run, when
the run does not converge to within tolerance.

Default: 300

• Termination tolerance for soft goals

Specify the relative tolerance for termination.

The optimization terminates when the relative decrease in the soft
constraint value decreases by less than this value over 10 consecutive
iterations. Increasing this value speeds up termination. Decreasing the
value yields tighter final values.

Default: 0.001

• Guess at best feasible value for soft goals

Specify an priori estimate of best soft constraint value.

For problems that mix soft and hard constraints, providing a rough
estimate of the optimal value of the soft constraints (subject to the hard
constraints) helps to speed up the optimization.

Default: 1
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Interpreting Tuning Results
The automated tuning software converts each soft and hard tuning goal into
normalized values fi(x) and gj(x), respectively. Here, x is the vector of tunable
parameters in the control system to tune.

The software then solves the minimization problem:

Minimize max
i

if x  subject to max
j

jg x   1 , for x x xmin max  .

xmin and xmax are the minimum and maximum values of the free parameters
of the control system.

When you tune a control system, you obtain the following output:

• In Control System Tuner, the current design is updated to use the tuned
parameters that best satisfy the minimization problem. By default, the
current design is reflected in all tuning goal plots and response plots you
have active in Control System Tuner.

Control System Tuner also displays a Tuning Report summarizing the
best achieved values of fi(x) and gj(x).
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The Worst Value entry reflects the largest of the optimized soft goal
values. In other words, the software minimizes the fi(x) values as well as it
can subject to the hard constraints. Worst Value highlights the largest
of the minimized fi(x) values. The closer each value is to 1, the closer that
requirement is to being satisfied.

• For command-line tuning, systune returns the control system model or
slTuner interface with the tuned parameter values. systune also returns
the best achieved values of each fi(x) and gj(x) as the vector-valued output
arguments fSoft and gHard, respectively. See the systune reference page
for more information.

For information about the functions fi(x) and gj(x) for each type of constraint,
see the reference pages for each design goal.

The software uses the nonsmooth optimization algorithms described in [1].

The software computes the H∞ norm using the algorithm of [2] and
structure-preserving eigensolvers from the SLICOT library. For more
information about the SLICOT library, see http://slicot.org.
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Create Response Plots in Control System Tuner
This example shows how to create response plots for analyzing system
performance in Control System Tuner. Control System Tuner can generate
many types of response plots in the time and frequency domains. You can
view responses of SISO or MIMO transfer functions between inputs and
outputs at any location in your model. Use response plots to validate the
performance of your tuned control system.

This example creates response plots for analyzing the sample model
rct_helico.

Choose Response Plot Type

In Control System Tuner, in the Control System tab, click New Plot.
Select the type of plot you want to create.

A new plot dialog box opens in which you specify the inputs and outputs of
the portion of your control system whose response you want to plot. For
example, select New step to create a step response plot from specified inputs
to specified outputs of your system.
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Specify Transfer Function

Choose which transfer function associated with the specified inputs and
outputs you want to analyze.

For most response plots types, the Select Response to Plot menu lets you
choose one of the following transfer functions:
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• New Input-Output Transfer Response — Transfer function between
specified inputs and outputs, computed with loops open at any additionally
specified loop-opening locations.

• New Sensitivity Transfer Response— Sensitivity function computed
at the specified location and with loops open at any specified loop-opening
locations.

• New Open-Loop Response — Open loop point-to-point transfer function
computed at the specified location and with loops open at any additionally
specified loop-opening locations.

• Entire System Response— For Pole/Zero maps and I/O Pole/Zero maps
only. Plot the pole and zero locations for the entire closed-loop control
system.

• Response of Tuned Block— For Pole/Zero maps and I/O Pole/Zero maps
only. Plot the pole and zero locations of tuned blocks.

Name the Response

Type a name for the response in the Response Name text box. Once you have
specified signal locations defining the response, Control System Tuner stores
the response under this name. When you create additional new response
plots, the response appears by this name in Select Response to Plot menu.

Choose Signal Locations for Evaluating System Response

Specify the signal locations in your control system at which to evaluate the
selected response. For example, the step response plot displays the response
of the system at one or more output locations to a unit step applied at one or
more input locations. Use the Specify input signals and Specify output
signals sections of the dialog box to specify these locations. (Other design
goal types, such as loop-shape or stability margins, require you to specify
only one location for evaluation. The procedure for specifying the location is
the same as illustrated here.)

Under Specify input signals, click Add signal to list. A list of available
input locations appears.

If the signal you want to designate as a step-response input is in the list,
click the signal to add it to the step-response inputs. If the signal you want
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to designate does not appear, and you are tuning a Simulink model, click
Select signal from model.

The Add signal from the model dialog box contains a list of signals that are
currently selected in the Simulink model. If the signal you want to designate
is listed, select it and click Add signal.

If the signal you want is not listed, select the signal in the Simulink model
editor. Then, return to the Add signal from the model dialog box and click
Add signal.
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The signal you selected now appears in the list of step-response inputs.

Click Add signal to list again to add an additional signal to the
step-response inputs list, if you want to specify a MIMO response.

Similarly, specify the locations at which the step response is measured to the
step-response outputs list. For example, the following configuration plots
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the MIMO response to a step input applied at theta-ref and phi-ref and
measured at theta and phi in the Simulink model rct_helico.

Tip To highlight any selected signal in the Simulink model, click . To
remove a signal from the input or output list, click .

Specify Loop Openings

You can evaluate most system responses with loops open at one or more
locations in the control system. Click Add loop opening location to list
to specify such locations for the response.

Store and Plot the Response

When you have finished specifying the response, click Plot in the new plot
dialog box. The new response appears in the Responses section of the Data
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Browser. A new figure opens displaying the response plot. When you tune
your control system, you can refer to this figure to evaluate the performance
of the tuned system.
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Tip To edit the specifications of the response, double-click the response in
the Data Browser. Any plots using that response update to reflect the edited
response.

View response characteristics such as rise-times or peak values by
right-clicking on the plot. Other options for managing and organizing multiple
plots are available in the View tab.
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Examine Tuned Controller Parameters in Control System
Tuner

After you tune your control system, Control System Tuner gives you two ways
to view the current values of the tuned block parameters:

• In the Data Browser, in the Tuned Blocks area, select the block whose
parameters you want to view. A text summary of the block and its current
parameter values appears in the Data Browser in the Data Preview area.

• In the Data Browser, in the Tuned Blocks area, double-click the block
whose parameters you want to view. The Tuned Block Editor window
opens, displaying the current values of the parameters. For array-valued
parameters, click to open a variable editor displaying values in the
array.
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Related
Examples

• “View and Change Block Parametrization in Control System Tuner” on
page 6-36

Concepts • “Tuned Block Editor” on page 6-10
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Compare Performance of Multiple Tuned Controllers
This example shows how to compare the performance of a control system
tuned with two different sets of design goals. Such comparison is useful, for
example, to see the effect on performance of changing a design goal from
hard goal to soft goal. Comparing performance is also useful to see the effect
of adding an additional design goal when an initial design fails to satisfy
all your performance requirements either in the linearized system or when
validated against a full nonlinear model.

This example compares tuning results for the sample model rct_linact.

Store First Design

After tuning a control system with a first set of design requirements, store
the design in Control System Tuner.

In the Control System tab, click Store. The stored design appears in the
Data Browser in the Designs area.
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Change the name of the stored design, if desired, by right-clicking on the
data browser entry.

Compute New Design

In the Tuning tab, make any desired changes to the tuning goals for the
second design. For example, add new design goals or edit existing design
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goals to change specifications. Or, in Manage Goals, change which
design goals are active and which are designated hard constraints or soft
requirements.

When you are ready, retune the control system with the new set of design
goals. Click Tune. Control System Tuner updates the current design (the
current set of controller parameters) with the new tuned design. All existing
plots, which by default show the current design, are updated to reflect the
new current design.

Compare New Design with Stored Design

Update all plots to reflect both the new design and the stored design. In the
Control System tab, click Compare. The Compare Designs dialog
box opens.

In the Compare Designs dialog box, the current design is checked by
default. Check the box for the design you want to compare to the current
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design. All response plots and tuning goal plots update to reflect the checked
designs. The solid trace corresponds to the current design. Other designs are
identified by name in the plot legend.

Use the same procedure save and compare as many designs as you need.

Restore Previously Saved Design

Under some conditions, it is useful to restore the tuned parameter values from
a previously saved design as the current design. For example, clicking
Update Blocks writes the current parameter values to the Simulink model.
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If you decide to test a stored controller design in your full nonlinear model,
you must first restore those stored values as the current design.

To do so, click Retrieve. Select the stored design that you want to make
the current design.
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Validate Tuned Controller in Simulink
Because Control System Tuner designs for a linearization of your Simulink
model, tuned block parameters must be validated by simulating the full
nonlinear model, even if the tuned system meets all your design goals in
Control System Tuner.

To write tuned block parameters to a Simulink model, in the Control System
tab, click Update Blocks.

Control System Tuner transfers the current values of the tuned block
parameters to the corresponding blocks in the Simulink model. Simulate the
model to evaluate model performance using the tuned values.

Tip If you tune the Simulink model at an operating point other than the
model initial condition, you might want to initialize the model at the same
operating point before simulating. See “Simulate Simulink Model at Specific
Operating Point” in the Simulink Control Design documentation.

To update Simulink model with parameter values from a previous design
stored in Control System Tuner, click Retrieve and select the stored design
that you want to make the current design. Then click Update Blocks.
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Create and Configure slTuner Interface to Simulink Model
This example shows how to create and configure an slTuner interface for a
Simulink model. The slTuner interface parameterizes blocks in your model
that you designate as tunable and tune them using systune. The slTuner
interface generates a linearization of your Simulink model, and also allows
you to extract linearized system responses for analysis and validation of the
tuned control system.

For this example, create and configure an slTuner interface for tuning the
Simulink model rct_helico, a multiloop controller for a rotorcraft. Open
the model.

open_system('rct_helico');
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The control system consists of two feedback loops. The inner loop (static
output feedback) provides stability augmentation and decoupling. The outer
loop (PI controllers) provides the desired setpoint tracking performance.

Suppose that you want to tune this model to meet the following control
objectives:

• Track setpoint changes in theta, phi, and r with zero steady-state error,
specified rise times, minimal overshoot, and minimal cross-coupling.

• Limit the control bandwidth to guard against neglected high-frequency
rotor dynamics and measurement noise.

• Provide strong multivariable gain and phase margins (robustness to
simultaneous gain/phase variations at the plant inputs and outputs).

The systune command can jointly tune the controller blocks SOF and the PI
controllers) to meet these design requirements. The slTuner interface sets
up this tuning task.

Create the slTuner interface.

ST0 = slTuner('rct_helico',{'PI1','PI2','PI3','SOF'});

This command initializes the slTuner interface with the three PI controllers
and the SOF block designated as tunable. Each tunable block is automatically
parameterized according to its type and initialized with its value in the
Simulink model.

To configure the slTuner interface, designate as analysis points any signal
locations of relevance to your design requirements. First, add the outputs and
reference inputs for the tracking requirements.

addPoint(ST0,{'theta-ref','theta','phi-ref','phi','r-ref','r'});

When you create a TuningGoal.Tracking object that captures the tracking
requirement, this object references the same signals.

Configure the slTuner interface for the stability margin requirements.
Designate as analysis points the plant inputs and outputs (control and
measurement signals) where the stability margins are measured.
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addPoint(ST0,{'u','y'});

Display a summary of the slTuner interface configuration in the command
window.

ST0

slTuner tuning interface for "rct_helico":

4 Tuned blocks: (Read-only TunedBlocks property)
--------------------------
Block 1: rct_helico/PI1
Block 2: rct_helico/PI2
Block 3: rct_helico/PI3
Block 4: rct_helico/SOF

8 Analysis points:
--------------------------
Point 1: Port 1 of rct_helico/theta-ref
Point 2: Signal "theta", located at port 1 of rct_helico/Demux1
Point 3: Port 1 of rct_helico/phi-ref
Point 4: Signal "phi", located at port 2 of rct_helico/Demux1
Point 5: Port 1 of rct_helico/r-ref
Point 6: Signal "r", located at port 3 of rct_helico/Demux1
Point 7: Signal "u", located at port 1 of rct_helico/Mux3
Point 8: Signal "y", located at port 1 of rct_helico/Helicopter

No permanent openings. Use addOpening to add new permanent openings.
Properties with dot notation get/set access:

Parameters : []
OperatingPoints : [] (model initial condition will be used.)
BlockSubstitutions : []
Options : [1x1 linearize.SlTunerOptions]
Ts : 0

In the command window, click on any highlighted signal to see its location in
the Simulink model.

In addition to specifying design requirements, you can use analysis points for
extracting system responses. For example, extract and plot the step responses
between the reference signals and 'theta', 'phi', and 'r'.
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T0 = ST0.getIOTransfer({'theta-ref','phi-ref','r-ref'},{'theta','phi','r'})
stepplot(T0,1)

All the step responses are unstable, including the cross-couplings, because
this model has not yet been tuned.

After you tune the model, you can similarly use the designated analysis
points to extract system responses for validating the tuned system. If you
want to examine system responses at locations that are not needed to specify
design requirements, add these locations to the slTuner interface as well. For
example, plot the sensitivity function measured at the output of the block
roll-off 2.
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addPoint(ST0,'dc')
dcS0 = getSensitivity(ST0,'dc');
bodeplot(dcS0)

Suppose you want to change the parameterization of tunable blocks in the
slTuner interface. For example, suppose that after tuning the model, you
want to test whether changing from PI to PID controllers yields improved
results. Change the parameterization of the three PI controllers to PID
controllers.

PID0 = pid(0,0.001,0.001,.01); % initial value for PID controllers
PID1 = ltiblock.pid('C1',PID0);
PID2 = ltiblock.pid('C2',PID0);
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PID3 = ltiblock.pid('C3',PID0);

setBlockParam(ST0,'PI1',PID1);
setBlockParam(ST0,'PI2',PID2);
setBlockParam(ST0,'PI3',PID3);

After you configure the slTuner interface to your Simulink model, you can
create tuning goals and tune the model using systune or looptune.

See Also slTuner | addBlock | addPoint | setBlockParam | getIOTransfer |
getSensitivity

Related
Examples

Concepts • “Design Goals”
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Time-Domain Specifications
This example gives a tour of available time-domain requirements for control
system tuning with systune or looptune.

Background

The systune and looptune commands tune the parameters of fixed-structure
control systems subject to a variety of time- and frequency-domain
requirements. The TuningGoal package is the repository for such design
requirements.

Desired Step Response

The TuningGoal.StepResp requirement specifies how the tuned closed-loop
system should respond to a step input. You can specify the desired response
either in terms of first- or second-order characteristics, or as an explicit
reference model. This requirement is satisfied when the relative gap between
the actual and desired responses is small enough in the least-squares sense.
For example,

R1 = TuningGoal.StepResp('r','y',0.5);

stipulates that the closed-loop response from r to y should behave like a
first-order system with time constant 0.5, while

R2 = TuningGoal.StepResp('r','y',zpk(2,[-1 -2],-1));

specifies a second-order, non-minimum-phase behavior. Use viewSpec to
visualize the desired response.

viewSpec(R2)

This requirement can be used to tune both SISO and MIMO step responses.
In the MIMO case, the requirement ensures that each output tracks the
corresponding input with minimum cross-couplings.

Reference Tracking and Overshoot Reduction

6-152



Time-Domain Specifications

The TuningGoal.Tracking requirement enforces more general reference
tracking and loop decoupling objectives. For example

R1 = TuningGoal.Tracking('r','y',2);

specifies that the output y should track the reference r with a two-second
response time. Similarly

R2 = TuningGoal.Tracking({'Vsp','wsp'},{'V','w'},2);

specifies that V should track Vsp and w should track wsp with minimum
cross-coupling between the two responses. Tracking requirements are
converted into frequency-domain constraints on the tracking error as a
function of frequency. For the first requirement R1, for example, the gain from
r to the tracking error e = r-y should be small at low frequency and approach
1 (100%) at frequencies greater than 1 rad/s (bandwidth for a two-second
response time). You can use viewSpec to visualize this frequency-domain
constraint. Note that the yellow region indicates where the requirement is
violated.

viewSpec(R1)

If the response has excessive overshoot, use the TuningGoal.Overshoot
requirement in conjunction with the tracking requirement. For example, you
can limit the overshoot from r to y to 10% using

R3 = TuningGoal.Overshoot('r','y',10);

Disturbance Rejection

The TuningGoal.Rejection requirement enforces disturbance rejection
objectives. This requirement specifies the disturbance attenuation as a
function of frequency. The attenuation factor is the ratio between the open-
and closed-loop sensitivities to the disturbance (typically greater than one
since feedback control reduces the impact of disturbances). As a rule of
thumb, a 10-times-larger attenuation requires a 10-times-larger loop gain.
For example

R1 = TuningGoal.Rejection('u',10);
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R1.Focus = [0 1];

specifies that a disturbance entering at the plant input "u" should be
attenuated by a factor 10 in the frequency band from 0 to 1 rad/s.

viewSpec(R1)

More generally, you can specify a frequency-dependent attenuation profile,
for example

s = tf('s');
R2 = TuningGoal.Rejection('u',(s+10)/(s+0.1));

specifies an attenuation factor of 100 below 0.1 rad/s gradually decreasing
to 1 (no attenuation) after 10 rad/s.

viewSpec(R2)

In a feedback loop (see, for example, Figure 1), the open- and closed-loop
responses from disturbance to output are related by

where is the loop transfer function measured at the disturbance entry
point. The gain of is the disturbance attenuation factor and its reciprocal
is the sensitivity at the disturbance input. Instead of specifying the
minimum attenuation, you can specify the maximum sensitivity using the
TuningGoal.Sensitivity requirement. For example,

R3 = TuningGoal.Sensitivity('u',(s+0.1)/(s+10));

is equivalent to the rejection requirement R2 above.

Figure 1: Sample feedback loop.
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LQG Design

Use the TuningGoal.LQG requirement to create a linear-quadratic-Gaussian
objective for tuning the control system parameters. This objective is
applicable to any control structure, not just the classical observer structure of
LQG control. For example, consider the simple PID loop of Figure 2 where
and are unit-variance disturbance and noise inputs, and and are lowpass
and highpass filters that model the disturbance and noise spectral contents.

Figure 2: Regulation loop.

To regulate around zero, you can use the following LQG criterion:

The first term in the integral penalizes the deviation of from zero, and the
second term penalizes the control effort. Using systune, you can tune the PID
controller to minimize the cost . To do this, use the LQG requirement

Qyu = diag([1 0.05]); % weighting of y^2 and u^2
R4 = TuningGoal.LQG({'d','n'},{'y','u'},1,Qyu);
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Frequency-Domain Specifications
This example gives a tour of available frequency-domain requirements for
control system tuning with systune or looptune.

Background

The systune and looptune commands tune the parameters of fixed-structure
control systems subject to a variety of time- and frequency-domain
requirements. The TuningGoal package is the repository for such design
requirements.

Gain Limit

The TuningGoal.Gain requirement enforces gain limits on SISO or MIMO
closed-loop transfer functions. This requirement is useful to enforce adequate
disturbance rejection and roll off, limit sensitivity and control effort, and
prevent saturation. For MIMO transfer functions, "gain" refers to the largest
singular value of the frequency response matrix. The gain limit can be
frequency dependent. For example

s = tf('s');
R1 = TuningGoal.Gain('d','y',s/(s+1)^2);

specifies that the gain from d to y should not exceed the magnitude of the
transfer function .

viewSpec(R1)

It is often convenient to just sketch the asymptotes of the desired gain profile.
For example, instead of the transfer function , we could just specify gain
values of 0.01,1,0.01 at the frequencies 0.01,1,100, the point (1,1) being the
breakpoint of the two asymptotes and .

Asymptotes = frd([0.01,1,0.01],[0.01,1,100]);
R2 = TuningGoal.Gain('d','y',Asymptotes);

The requirement object automatically turns this discrete gain profile into a
gain limit defined at all frequencies.
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bodemag(Asymptotes,R2.MaxGain)
legend('Specified','Interpolated')

Variance Amplification

The TuningGoal.Variance requirement limits the noise variance
amplification from specified inputs to specified outputs. In technical terms,
this requirement constrains the norm of a closed-loop transfer function. This
requirement is preferable to TuningGoal.Gain when the input signals are
random processes and the average gain matters more than the peak gain.
For example,

R = TuningGoal.Variance('n','y',0.1);

limits the output variance of y to for a unit-variance white-noise input n.

Frequency-Weighted Gain and Variance

The TuningGoal.WeightedGain and TuningGoal.WeightedVariance
requirements are generalizations of the TuningGoal.Gain and
TuningGoal.Variance requirements. These requirements constrain the or
norm of a frequency-weighted closed-loop transfer function , where and are
user-defined weighting functions. For example

WL = blkdiag(1/(s+0.001),s/(0.001*s+1));
WR = [];
R = TuningGoal.WeightedGain('r',{'e','y'},WL,[]);

specifies the constraint

Note that this is a normalized gain constraint (unit bound across frequency).

viewSpec(R)
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The TuningGoal.WeightedVariance requirement is useful to specify
LQG-like performance objectives. For example, the LQG cost

can be expressed as

where is the closed-loop transfer from process and measurement noise to the
states and controls , and are Cholesky factors of and (see chol).

Sensitivity to Disturbances

The TuningGoal.Sensitivity requirement limits the sensitivity to
disturbances at a particular location. The sensitivity function is a
frequency-dependent measure of the control system’s ability to reject
disturbances. Feedback typically reduces sensitivity inside the control
bandwidth. For example,

R = TuningGoal.Sensitivity('u',s/(s+2));

constrains the sensitivity at the location "u" in the feedback loop of Figure 1.

Figure 1: Sample feedback loop.

The desired sensitivity is zero at DC (perfect rejection of disturbance "d") and
increases to 1 near 5 rad/s (no rejection past 5 rad/s).

viewSpec(R)
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Loop Shape and Stability Margin Specifications
This example shows how to specify loop shapes and stability margins when
tuning control systems with systune or looptune.

Background

The systune and looptune commands tune the parameters of fixed-structure
control systems subject to a variety of time- and frequency-domain
requirements. The TuningGoal package is the repository for such design
requirements.

Loop Shape

The TuningGoal.LoopShape requirement is used to shape the open-loop
response gain(s), a design approach known as loop shaping. For example,

s = tf('s');
R1 = TuningGoal.LoopShape('u',1/s);

specifies that the open-loop response measured at the location "u" should look
like a pure integrator (as far as its gain is concerned). In MATLAB, use a
loopswitch block to mark the location "u", see the "Building Tunable Models"
example for details. In Simulink, use the addPoint method of the slTuner
interface to mark "u" as a point of interest.

As with other gain specifications, you can just specify the asymptotes of the
desired loop shape using a few frequency points. For example, to specify a loop
shape with gain crossover at 1 rad/s, -20 dB/decade slope before 1 rad/s, and
-40 dB/decade slope after 1 rad/s, just specify that the gain at the frequencies
0.1,1,10 should be 10,1,0.01, respectively.

LS = frd([10,1,0.01],[0.1,1,10]);
R2 = TuningGoal.LoopShape('u',LS);

bodemag(LS,R2.LoopGain)
legend('Specified','Interpolated')
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Loop shape requirements are constraints on the open-loop response . For
tuning purposes, they are converted into closed-loop gain constraints on the
sensitivity function and complementary sensitivity function . Use viewSpec
to visualize the target loop shape and corresponding gain bounds on (green)
and (red).

viewSpec(R2)

Minimum and Maximum Loop Gain

Instead of TuningGoal.LoopShape, you can use TuningGoal.MinLoopGain
and TuningGoal.MaxLoopGain to specify minimum or maximum values for
the loop gain in a particular frequency band. This is useful when the actual
loop shape near crossover is best left to the tuning algorithm to figure out. For
example, the following requirements specify the minimum loop gain inside
the bandwidth and the roll-off characteristics outside the bandwidth, but do
not specify the actual crossover frequency nor the loop shape near crossover.

MinLG = TuningGoal.MinLoopGain('u',5/s); % integral action
MinLG.Focus = [0 0.2];

MaxLG = TuningGoal.MaxLoopGain('u',1/s^2); % -40dB/decade roll off
MaxLG.Focus = [1 Inf];

viewSpec([MinLG MaxLG])

The TuningGoal.MaxLoopGain requirement rests on the fact that the open-
and closed-loop gains are comparable when the loop gain is small ( ). As a
result, it can be ineffective at keeping the loop gain below some value close
to 1. For example, suppose that flexible modes cause gain spikes beyond the
crossover frequency and that you need to keep these spikes below 0.5 (-6 dB).
Instead of using TuningGoal.MaxLoopGain, you can directly constrain the
gain of using TuningGoal.Gain with a loop opening at "u".

MaxLG = TuningGoal.Gain('u','u',0.5);
MaxLG.Opening = 'u';
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If the open-loop response is unstable, make sure to further disable the implicit
stability constraint associated with this requirement.

MaxLG.Stabilize = false;

Figure 1 shows this requirement evaluated for an open-loop response with
flexible modes.

Figure 1: Gain constraint on L.

Stability Margins

The TuningGoal.Margins requirement enforces minimum amounts of gain
and phase margins at the specified loop opening site(s). For MIMO feedback
loops, this requirement uses the notion of disk margins, which guarantee
stability for concurrent gain and phase variations of the specified amount in
all feedback channels (see loopmargin for details). For example,

R = TuningGoal.Margins('u',6,45);

enforces dB of gain margin and 45 degrees of phase margin at the location
"u". In MATLAB, use a loopswitch block to mark the location "u", see
the "Building Tunable Models" example for details. In Simulink, use the
addPoint method of the slTuner interface to mark "u" as a point of interest.
Stability margins are typically measured at the plant inputs or plant outputs
or both.

The target gain and phase margin values are converted into a normalized gain
constraint on some appropriate closed-loop transfer function. The desired
margins are achieved at frequencies where the gain is less than 1.

viewSpec(R)
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System Dynamics Specifications
This example shows how to constrain the poles of a control system tuned
with systune or looptune.

Background

The systune and looptune commands tune the parameters of fixed-structure
control systems subject to a variety of time- and frequency-domain
requirements. The TuningGoal package is the repository for such design
requirements.

Closed-Loop Poles

The TuningGoal.Poles requirement constrains the location of the closed-loop
poles. You can enforce some minimum decay rate

impose some minimum damping ratio

or constrain the pole magnitude to

For example

R = TuningGoal.Poles();
R.MinDecay = 0.5;
R.MinDamping = 0.7;
R.MaxFrequency = 10;

constrains the closed-loop poles to lie in the white region below.

viewSpec(R)
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Increasing the MinDecay value results in faster transients. Increasing the
MinDamping value results in better damped transients. Decreasing the
MaxFrequency value prevents fast dynamics.

Controller Stability

The TuningGoal.StableController requirement enforces stability of a given
control element (compensator). The tuning algorithm may produce unstable
compensators for unstable plants. You can prevent this by constraining
the location of the compensator poles. For example, if your compensator is
parameterized as a second-order transfer function,

C = ltiblock.tf('C',1,2);

you can force it to have stable dynamics by adding the requirement

R = TuningGoal.StableController('C');
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Tune Control System at the Command Line
After specifying your design goals using TuningGoal objects, use systune to
tune the parameters of your model.

The systune command lets you designate one or more design goals as hard
goals. This designation gives you a way to differentiate must-have goals from
nice-to-have design goals.systune attempts to satisfy hard requirements by
driving their associated cost functions below 1. Subject to that constraint,
the software comes as close as possible to satisfying remaining (soft)
requirements. For best results, make sure you can obtain a reasonable design
with all goals treated as soft goals before attempting to enforce any goal as a
hard constraint.

Organize your TuningGoal objects into a vector of soft requirements and
a vector of hard requirements. For example, suppose you have created
a tracking requirement, a rejection requirement, and stability margin
requirements at the plant inputs and outputs. The following commands tune
the control system represented by T0, treating the stability margins as hard
goals, the tracking and rejection requirements as soft goals. (T0 is either a
genss model or an slTuner interface previously configured for tuning.)

SoftReqs = [Rtrack,Rreject];
HardReqs = [RmargIn,RmargOut];
[T,fSoft,gHard] = systune(T0,SoftReqs,HardReqs);

systune converts each tuning requirement into a normalized scalar value, f
for the soft constraints and g for the hard constraints. The command adjusts
the tunable parameters of T0 to minimize the f values, subject to the constraint
that each g < 1. systune returns the vectors fSoft and gHard that contain
the final normalized values for each design goal in SoftReqs and HardReqs.

Use systuneOptions to configure additional options for the systune
algorithm, such as the number of independent optimization runs, convergence
tolerance, and output display options.

See Also systune | systune | systuneOptions

Concepts • “Interpreting Tuning Results” on page 6-126
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Tune Controller Against Set of Plant Models
systune can simultaneously tune the parameters of multiple models or
control configurations. For example you can:

• Tune a single controller against a range of plant models, to help ensure
that the tuned control system is robust against parameter variations

• Tune for reliable control by simultaneously to multiple plant configurations
that represent different failure modes of a system

In either case, systune finds values for tunable parameters that best satisfy
the specified tuning objectives for all models.

To tune a controller parameters against a set of plant models:

1 Create an array of genss models that represent the control systems or
configurations to tune against.

2 Specify your tuning objectives using TuningGoal requirements objects such
as TuningGoal.Tracking, TuningGoal.Gain, or TuningGoal.Margins. If
you want to limit a tuning requirement to a subset of the models in the
model array, set the Models property of the TuningGoal requirement.

For example, suppose you have a model array whose first entry represents
your control system under normal operating conditions, and whose second
entry represents the system in a failure mode. Suppose further that Req
is a TuningGoal.Tracking requirement that only applies to the normally
operating system. To enforce the requirement only on the first entry, use
the following command:

Req.Models = [1];

3 Provide the model array and tuning requirements as input argument to
systune.

systune jointly tunes the tunable parameters for all models in the array to
best meet the tuning requirements as you specify them. systune returns an
array containing the corresponding tuned models. You can use getBlockValue
or showTunable to access the tuned values of the control elements.
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Speed Up Tuning with Parallel Computing Toolbox
Software

This example shows how to speed up the tuning of fixed-structure control
systems if you have the Parallel Computing Toolbox software installed. When
you run multiple randomized optimization starts, parallel computing speeds
up tuning by distributing the optimization runs among workers.

To distribute randomized optimization runs among workers:

If Automatically create a parallel pool is not selected in your Parallel
Computing Toolbox preferences, manually start a parallel pool using parpool.
For example:

parpool;

If Automatically create a parallel pool is selected in your preferences, you
do not need to manually start a pool.

Create a systuneOptions, looptuneOptions, or hinfstructOptions set
that specifies multiple random starts. For example, the following options set
specifies 20 random restarts to run in parallel for tuning with looptune:

options = systuneOptions('RandomStart',20,'UseParallel',true);

Setting UseParallel to true enables parallel processing by distributing the
randomized starts among available workers in the parallel pool.

Use the options set when you call systune, looptune or hinfstruct. For
example, if you have already created a tunable control system model, CL0, and
tunable controller, and tuning requirement vectors SoftReqs and HardReqs,
the following command uses parallel computing to tune the control system
of CL0 with systune.

[CL,fSoft,gHard,info] = systune(CL0,SoftReq,Hardreq,options);

To learn more about configuring a parallel pool, see the Parallel Computing
Toolbox documentation.

See Also parpool
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Related
Examples

• “Using Parallel Computing to Accelerate Tuning” on page 6-195

Concepts • “Parallel Preferences”
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Validate Tuned Control System at the Command Line

In this section...

“Extract and Plot System Responses” on page 6-168

“View Design Goals” on page 6-168

“Write Tuned Parameters to Simulink Model” on page 6-169

“Improve Tuning Results” on page 6-169

To validate your tuned control system, use the following tools and techniques.

Extract and Plot System Responses
Evaluate the performance of your tuned control system by extracting and
plotting system responses. For instance, evaluate reference tracking or
overshoot performance by plotting the step response of transfer function from
the reference input to the controlled output. Or, evaluate stability margins
by extracting an open-loop transfer function and using the margin command.
You can extract any transfer function you need for analysis from the tuned
model of your control system.

• To extract responses from a tuned generalized state-space (genss)
model, use analysis functions such as getIOTransfer, getLoopTransfer,
getSensitivity, andgetCompSensitivity.

• For a Simulink tuned through an slTuner interface, extract responses
from the interface using analysis functions such as getIOTransfer,
getLoopTransfer, getSensitivity, andgetCompSensitivity.

In either case, the extracted responses are represented by state-space (ss)
models. You can analyze these models using commands such as step, bode,
sigma, or margin.

View Design Goals
Visualize your design goals using the viewSpec command. For each type of
design goal, viewSpec plots the target requirement and the achieved response
of your tuned system. This visualization allows you to examine how far your
control system is from ideal performance. It can also help you determine
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where you can achieve better tuning results by limiting the frequency range
of a design goal, relaxing a design goal from hard to soft, increasing the
tolerance of a design goal, or similar adjustments.

For example, suppose you have tuned your control system with a tracking
requirement Rtrack and a rejection requirement Rreject. The following
commands display plots that let you evaluate how closely the tuned system
meets those requirements. (T is the tuned output of systune, either a genss
model or an slTuner interface.)

viewSpec(Rtrack,T)
viewSpec(Rreject,T)

Write Tuned Parameters to Simulink Model
When you tune a Simulink model, the software evaluates design goals for a
linearization of the model stored in the slTuner interface. Therefore, you
must validate the tuned controllers by simulating the full nonlinear model,
even if the tuned linear system meets all your design goals.

To write tuned block values from a tuned slTuner interface to the
corresponding Simulink model, use the writeBlockValue command. For
example, suppose SLT is a tuned slTuner interface returned by systune. The
following command writes the tuned parameters from SLT to the associated
Simulink model.

writeBlockValue(SLT)

Simulate the Simulink model to evaluate the tuned system performance.

Improve Tuning Results
If systune does not find a set of controller parameters that meet your design
requirements, make adjustments to your set of design goals to improve the
results. For example:

• Designate design goals that are must-have requirements as hard goals.
Or, relax design goals that are not absolute requirements by designating
them as soft goals.

• Limit the frequency range in which frequency-domain goals are enforced.
Use the Focus property of the TuningGoal object to do this.
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• Increase the tolerance of design goals for which a tolerance is applicable.
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Extract Responses from Tuned MATLAB Model at the
Command Line

This example shows how to analyze responses of a tuned control system by
using getIOTransfer to compute responses between various inputs and
outputs of a closed-loop model of the system.

Consider the following control system.
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Suppose you have used systune to tune a genss model of this control system.
The result is a genss model, T, which contains tunable blocks representing
the controller elements C1 and C2. The tuned model also contains loopswitch
blocks that represent the loop-opening locations, X1 and X2.

Analyze the tuned system performance by examining various system
responses extracted from T. For example, examine the response at the output,
y, to a disturbance injected at the point d1.

H1 = getIOTransfer(T,'X1','y');

H1 represents the closed-loop response of the control system to a disturbance
injected at the implicit input associated with the loopswitch block X1, which
is the location of d1:

	����+���,
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H1 is a genss model that includes the tunable blocks of T. H1 allows you to
validate the disturbance response of your tuned system. For example, you can
use analysis commands such as bodeplot or stepplot to analyze H1. You can
also use getValue to obtain the current value of H1, in which all the tunable
blocks are evaluated to their current numeric values.

Similarly, examine the response at the output to a disturbance injected at
the point d2.

H2 = getIOTransfer(T,'X2','y');

You can also generate a two-input, one-output model representing the
response of the control system to simultaneous disturbances at both d1 and d2.
To do so, provide getIOTransfer with a cell array that specifies the multiple
input locations.

H = getIOTransfer(T,{'X1','X2'},'y');
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Tuning Control Systems with SYSTUNE
The systune command can jointly tune the gains of your control system
regardless of its architecture and number of feedback loops. This example
outlines the systune workflow on a simple application.

Head-Disk Assembly Control

This example uses a 9th-order model of the head-disk assembly (HDA) in a
hard-disk drive. This model captures the first few flexible modes in the HDA.

load rctExamples G
bode(G), grid

We use the feedback loop shown below to position the head on the correct
track. This control structure consists of a PI controller and a low-pass filter
in the return path. The head position y should track a step change r with
a response time of about one millisecond, little or no overshoot, and no
steady-state error.

Figure 1: Control Structure

You can use systune to directly tune the PI gains and filter coefficient subject
to a variety of time- and frequency-domain requirements.

Specifying the Tunable Elements

There are two tunable elements in the control structure of Figure 1: the PI
controller and the low-pass filter

You can use the ltiblock.pid class to parameterize the PI block:

C0 = ltiblock.pid('C','pi'); % tunable PI
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To parameterize the lowpass filter , create a tunable real parameter and
construct a first-order transfer function with numerator and denominator :

a = realp('a',1); % filter coefficient
F0 = tf(a,[1 a]); % filter parameterized by a

See the "Building Tunable Models" example for an overview of available
tunable elements.

Building a Tunable Closed-Loop Model

Next build a closed-loop model of the feedback loop in Figure 1. To facilitate
open-loop analysis and specify open-loop requirements such as desired
stability margins, add a loop opening switch at the plant input u:

LSU = loopswitch('u');

Figure 2: Loop Switch Block

Use feedback to build a model of the closed-loop transfer from reference
r to head position y:

T0 = feedback(G*LSU*C0,F0); % closed-loop transfer from r to y
T0.InputName = 'r';
T0.OutputName = 'y';

The result T0 is a generalized state-space model (genss) that depends on
the tunable elements and .

Specifying the Design Requirements

The TuningGoal package contains a variety of control design requirements
for specifying the desired behavior of the control system. These include
requirements on the response time, deterministic and stochastic gains, loop
shape, stability margins, and pole locations. Here we use two requirements to
capture the control objectives:
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• Tracking requirement : The position y should track the reference r
with a 1 millisecond response time

• Stability margin requirement : The feedback loop should have 6dB of
gain margin and 45 degrees of phase margin

Use the TuningGoal.Tracking and TuningGoal.Margins objects to capture
these requirements. Note that the margins requirement applies to the
open-loop response measured at the plant input u (location marked by the
loopswitch block LSU).

Req1 = TuningGoal.Tracking('r','y',0.001);
Req2 = TuningGoal.Margins('u',6,45);

Tuning the Controller Parameters

You can now use systune to tune the PI gain and filter coefficient . This
function takes the tunable closed-loop model T0 and the requirements
Req1,Req2. Use a few randomized starting points to improve the chances
of getting a globally optimal design.

rng('default')
Options = systuneOptions('RandomStart',3);
[T,fSoft,~,Info] = systune(T0,[Req1,Req2],Options);

Final: Soft = 115, Hard = -Inf, Iterations = 108
Final: Soft = 1.35, Hard = -Inf, Iterations = 139
Final: Soft = 2.78e+03, Hard = -Inf, Iterations = 182

Some closed-loop poles are marginally stable (decay rate near 1e-07)
Final: Soft = 1.35, Hard = -Inf, Iterations = 59

All requirements are normalized so a requirement is satisfied when its value
is less than 1. Here the final value is slightly greater than 1, indicating that
the requirements are nearly satisfied. Use the output fSoft to see the tuned
value of each requirement. Here we see that the first requirement (tracking)
is slightly violated while the second requirement (margins) is satisfied.

fSoft

fSoft =
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1.3461 0.6326

The first output T of systune is the "tuned" closed-loop model. Use
showTunable or getBlockValue to access the tuned values of the PI gains
and filter coefficient:

getBlockValue(T,'C') % tuned value of PI controller

ans =

1
Kp + Ki * ---

s

with Kp = 0.00104, Ki = 0.0122

Name: C
Continuous-time PI controller in parallel form.

showTunable(T) % tuned values of all tunable elements

C =

1
Kp + Ki * ---

s

with Kp = 0.00104, Ki = 0.0122

Name: C
Continuous-time PI controller in parallel form.
-----------------------------------
a = 3.19e+03

Validating Results
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First use viewSpec to inspect how the tuned system does against each
requirement. The first plot shows the tracking error as a function of frequency,
and the second plot shows the normalized disk margins as a function of
frequency (see loopmargin). See the "Creating Design Requirements" example
for details.

clf, viewSpec([Req1 Req2],T,Info)

Next plot the closed-loop step response from reference r to head position y.
The response has no overshoot but wobbles a little.

clf, step(T)

To investigate further, use getLoopTransfer to get the open-loop response at
the plant input.

L = getLoopTransfer(T,'u');
bode(L,{1e3,1e6}), grid
title('Open-loop response')

The wobble is due to the first resonance after the gain crossover. To eliminate
it, you could add a notch filter to the feedback loop and tune its coefficients
along with the lowpass coefficient and PI gains using systune.
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Tuning Control Systems in Simulink
This example shows how to use systune or looptune to automatically tune
control systems modeled in Simulink.

Engine Speed Control

For this example we use the following model of an engine speed control system:

open_system('rct_engine_speed')

The control system consists of a single PID loop and the PID controller gains
must be tuned to adequately respond to step changes in the desired speed.
Specifically, we want the response to settle in less than 5 seconds with little
or no overshoot. While pidtune is a faster alternative for tuning a single
PID controller, this simple example is well suited for an introduction to the
systune and looptune workflows in Simulink.

Controller Tuning with SYSTUNE

The slTuner interface provides a convenient gateway to systune for control
systems modeled in Simulink. This interface lets you specify which blocks in
the Simulink model are tunable and what signals are of interest for open- or
closed-loop validation. Create an slTuner instance for the rct_engine_speed
model and list the "PID Controller" block (highlighted in orange) as tunable.
Note that all Linear Analysis points in the model (signals "Ref" and "Speed"
here) are automatically available as points of interest for tuning.

ST0 = slTuner('rct_engine_speed','PID Controller');

The PID block is initialized with its value in the Simulink model, which you
can access using getBlockValue. Note that the proportional and derivative
gains are initialized to zero.

getBlockValue(ST0,'PID Controller')

ans =
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1
Ki * ---

s

with Ki = 0.01

Name: PID_Controller
Continuous-time I-only controller.

Next create a reference tracking requirement to capture the target settling
time. Use the signal names in the Simulink model to refer to the reference
and output signals, and use a two-second response time target to ensure
settling in less than 5 seconds.

TrackReq = TuningGoal.Tracking('Ref','Speed',2);

You can now tune the control system ST0 subject to the requirement TrackReq.

ST1 = systune(ST0,TrackReq);

Final: Soft = 1.07, Hard = -Inf, Iterations = 115

The final value is close to 1 indicating that the tracking requirement is met.
systune returns a "tuned" version ST1 of the control system described by ST0.
Again use getBlockValue to access the tuned values of the PID gains:

getBlockValue(ST1,'PID Controller')

ans =

1 s
Kp + Ki * --- + Kd * --------

s Tf*s+1

with Kp = 0.00188, Ki = 0.0033, Kd = 0.000466, Tf = 0.000203

Name: PID_Controller
Continuous-time PIDF controller in parallel form.
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To simulate the closed-loop response to a step command in speed, get the
initial and tuned transfer functions from speed command "Ref" to "Speed"
output and plot their step responses:

T0 = getIOTransfer(ST0,'Ref','Speed');
T1 = getIOTransfer(ST1,'Ref','Speed');
step(T0,T1)
legend('Initial','Tuned')

Controller Tuning with LOOPTUNE

You can also use looptune to tune control systems modeled in Simulink.
The looptune workflow is very similar to the systune workflow. One
difference is that looptune needs to know the boundary between the plant
and controller, which is specified in terms of controls and measurements
signals. For a single loop the performance is essentially captured by the
response time, or equivalently by the open-loop crossover frequency. Based on
first-order characteristics the crossover frequency should exceed 1 rad/s for
the closed-loop response to settle in less than 5 seconds. You can therefore
tune the PID loop using 1 rad/s as target 0-dB crossover frequency.

% Mark the signal "u" as a point of interest
addPoint(ST0,'u')

% Tune the controller parameters
Control = 'u';
Measurement = 'Speed';
wc = 1;
ST1 = looptune(ST0,Control,Measurement,wc);

Final: Peak gain = 0.961, Iterations = 10
Achieved target gain value TargetGain=1.

Again the final value is close to 1, indicating that the target control bandwidth
was achieved. As with systune, use getIOTransfer to compute and plot the
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closed-loop response from speed command to actual speed. The result is very
similar to that obtained with systune.

T0 = getIOTransfer(ST0,'Ref','Speed');
T1 = getIOTransfer(ST1,'Ref','Speed');
step(T0,T1)
legend('Initial','Tuned')

You can also perform open-loop analysis, for example, compute the gain and
phase margins at the plant input u.

% Note: -1 because |margin| expects the negative-feedback loop transfer
L = getLoopTransfer(ST1,'u',-1);

margin(L), grid

Validation in Simulink

Once you are satisfied with the systune or looptune results, you can upload
the tuned controller parameters to Simulink for further validation with the
nonlinear model.

writeBlockValue(ST1)

You can now simulate the engine response with the tuned PID controller.

The nonlinear simulation results closely match the linear responses obtained
in MATLAB.

Comparison of PI and PID Controllers

Closer inspection of the tuned PID gains suggests that the derivative term
contributes little because of the large value of the Tf coefficient.
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showTunable(ST1)

Block 1: rct_engine_speed/PID Controller =

1 s
Kp + Ki * --- + Kd * --------

s Tf*s+1

with Kp = 0.000653, Ki = 0.00282, Kd = 0.0021, Tf = 46.7

Name: PID_Controller
Continuous-time PIDF controller in parallel form.

This suggests using a simpler PI controller instead. To do this, you need to
override the default parameterization for the "PID Controller" block:

setBlockParam(ST0,'PID Controller',ltiblock.pid('C','pi'))

This specifies that the "PID Controller" block should now be parameterized
as a mere PI controller. Next re-tune the control system for this simpler
controller:

ST2 = looptune(ST0,Control,Measurement,wc);

Final: Peak gain = 0.915, Iterations = 5
Achieved target gain value TargetGain=1.

Again the final value is less than one indicating success. Compare the
closed-loop response with the previous ones:

T2 = getIOTransfer(ST2,'Ref','Speed');
step(T0,T1,T2,'r--')
legend('Initial','PID','PI')

Clearly a PI controller is sufficient for this application.
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Building Tunable Models
This example shows how to create tunable models of control systems for use
with systune or looptune.

Background

You can tune the gains and parameters of your control system with systune
or looptune. To use these commands, you need to construct a tunable model
of the control system that identifies and parameterizes its tunable elements.
This is done by combining numeric LTI models of the fixed elements with
parametric models of the tunable elements.

Using Pre-Defined Tunable Elements

You can use one of the following "parametric" blocks to model commonly
encountered tunable elements:

• ltiblock.gain: Tunable gain

• ltiblock.pid: Tunable PID controller

• ltiblock.pid2: Tunable two-degree-of-freedom PID controller

• ltiblock.tf: Tunable transfer function

• ltiblock.ss: Tunable state-space model.

For example, create a tunable model of the feedforward/feedback configuration
of Figure 1 where is a tunable PID controller and is a tunable first-order
transfer function.

Figure 1: Control System with Feedforward and Feedback Paths

First model each block in the block diagram, using suitable parametric blocks
for and .

G = tf(1,[1 1]);
C = ltiblock.pid('C','pid'); % tunable PID block
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F = ltiblock.tf('F',0,1); % tunable first-order transfer function

Then use connect to build a model of the overall block diagram. To specify
how the blocks are connected, label the inputs and outputs of each block and
model the summing junctions using sumblk.

G.u = 'u'; G.y = 'y';
C.u = 'e'; C.y = 'uC';
F.u = 'r'; F.y = 'uF';

% Summing junctions
S1 = sumblk('e = r-y');
S2 = sumblk('u = uF + uC');

T = connect(G,C,F,S1,S2,'r','y')

T =

Generalized continuous-time state-space model with 1 outputs, 1 inputs, 3
C: Parametric PID controller, 1 occurrences.
F: Parametric SISO transfer function, 0 zeros, 1 poles, 1 occurrences.

Type "ss(T)" to see the current value, "get(T)" to see all properties, and

This creates a generalized state-space model T of the closed-loop transfer
function from r to y. This model depends on the tunable blocks C and F. You
can use systune to automatically tune the PID gains and the feedforward
coefficients a,b subject to your performance requirements. Use showTunable
to see the current value of the tunable blocks.

showTunable(T)

C =

1
Ki * ---

s
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with Ki = 0.001

Name: C
Continuous-time I-only controller.
-----------------------------------
F =

10
------
s + 10

Name: F
Continuous-time transfer function.

Interacting with the Tunable Parameters

You can adjust the parameterization of the tunable elements and by
interacting with the objects C and F. Use get to see their list of properties.

get(C)

Kp: [1x1 param.Continuous]
Ki: [1x1 param.Continuous]
Kd: [1x1 param.Continuous]
Tf: [1x1 param.Continuous]

IFormula: ''
DFormula: ''

Ts: 0
TimeUnit: 'seconds'

InputName: {'e'}
InputUnit: {''}

InputGroup: [1x1 struct]
OutputName: {'uC'}
OutputUnit: {''}

OutputGroup: [1x1 struct]
Name: 'C'

Notes: {}
UserData: []
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A PID controller has four tunable parameters Kp,Ki,Kd,Tf. The tunable
block C contains a description of each of these parameters. Parameter
attributes include current value, minimum and maximum values, and
whether the parameter is free or fixed.

C.Kp

ans =

Name: 'Kp'
Value: 0

Minimum: -Inf
Maximum: Inf

Free: 1
Scale: 1
Info: [1x1 struct]

1x1 param.Continuous

Set the corresponding attributes to override defaults. For example, you can
fix the time constant Tf to the value 0.1 by

C.Tf.Value = 0.1;
C.Tf.Free = false;

Creating Custom Tunable Elements

For tunable elements not covered by the pre-defined blocks listed above, you
can create your own parameterization in terms of elementary real parameters
(realp). Consider the low-pass filter

where the coefficient is tunable. To model this tunable element, create a
real parameter and define as a transfer function whose numerator and
denominator are functions of . This creates a generalized state-space model F
of the low-pass filter parameterized by the tunable scalar a.
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a = realp('a',1); % real tunable parameter, initial value 1
F = tf(a,[1 a])

F =

Generalized continuous-time state-space model with 1 outputs, 1 inputs, 1
a: Scalar parameter, 2 occurrences.

Type "ss(F)" to see the current value, "get(F)" to see all properties, and

Similarly, you can use real parameters to model the notch filter

with tunable coefficients .

wn = realp('wn',100);
zeta1 = realp('zeta1',1); zeta1.Maximum = 1; % zeta1 <= 1
zeta2 = realp('zeta2',1); zeta2.Maximum = 1; % zeta2 <= 1
N = tf([1 2*zeta1*wn wn^2],[1 2*zeta2*wn wn^2]); % tunable notch filter

You can also create tunable elements with matrix-valued parameters. For
example, model the observer-based controller with equations

and tunable gain matrices and .

% Plant with 6 states, 2 controls, 3 measurements
[A,B,C] = ssdata(rss(6,3,2));

K = realp('K',zeros(2,6));
L = realp('L',zeros(6,3));

C = ss(A-B*K-L*C,L,-K,0)

C =
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Generalized continuous-time state-space model with 2 outputs, 3 inputs, 6
K: Parametric 2x6 matrix, 2 occurrences.
L: Parametric 6x3 matrix, 2 occurrences.

Type "ss(C)" to see the current value, "get(C)" to see all properties, and

Enabling Open-Loop Requirements

The systune command takes a closed-loop model of the overall control system,
like the tunable model T built at the beginning of this example. Such models
do not readily support open-loop analysis or open-loop specifications such as
loop shapes and stability margins. To gain access to open-loop responses,
insert a loopswitch block as shown in Figure 2.

Figure 2: Loop Switch Block

The loopswitch block is an open/closed switch that can be used to open
feedback loops or to measure open-loop responses. For example, construct a
closed-loop model T of the feedback loop of Figure 2 where is a tunable PID.

G = tf(1,[1 1]);
C = ltiblock.pid('C','pid');
LS = loopswitch('X');
T = feedback(G*C,LS);

By default the loop switch "X" is closed and T models the closed-loop transfer
from to . However, you can now use getLoopTransfer to compute the
(negative-feedback) loop transfer function measured at the location "X". Note
that this loop transfer function is for the feedback loop of Figure 2.

L = getLoopTransfer(T,'X',-1); % loop transfer at "X"
clf, bode(L,'b',G*C,'r--')
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You can also refer to the location "X" when specifying target loop shapes or
stability margins for systune. The requirement then applies to the loop
transfer measured at this location.

% Target loop shape for loop transfer at "X"
Req1 = TuningGoal.LoopShape('X',tf(5,[1 0]));

% Target stability margins for loop transfer at "X"
Req2 = TuningGoal.Margins('X',6,40);

In general, loop opening locations are specified in the Location property
of loopswitch blocks. For single-loop switches, the block name is used as
default location name. For multi-loop switches, indices are appended to the
block name to form the default location names.

LS = loopswitch('Y',2); % two-channel switch
LS.Location

ans =

'Y(1)'
'Y(2)'

You can override the default location names and use more descriptive names
by modifying the Location property.

% Rename loop opening locations to "InnerLoop" and "OuterLoop".
LS.Location = {'InnerLoop' ; 'OuterLoop'};
LS.Location

ans =

'InnerLoop'
'OuterLoop'
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Validating Results
This example shows how to interpret and validate tuning results from
systune.

Background

You can tune the parameters of your control system with systune or
looptune. The design specifications are captured using TuningGoal
requirement objects. This example shows how to interpret the results from
systune, graphically verify the design requirements, and perform additional
open- and closed-loop analysis.

Controller Tuning with SYSTUNE

We use an autopilot tuning application as illustration, see the "Tuning of
a Two-Loop Autopilot" example for details. The tuned compensator is the
"MIMO Controller" block highlighted in orange in the model below.

open_system('rct_airframe2')

The setup and tuning steps are repeated below for completeness.

ST0 = slTuner('rct_airframe2','MIMO Controller');

% Compensator parameterization
C0 = ltiblock.ss('C',2,1,2);
C0.d.Value(1) = 0; C0.d.Free(1) = false;
ST0.setBlockParam('MIMO Controller',C0)

% Requirements
Req1 = TuningGoal.Tracking('az ref','az',1); % tracking
Req2 = TuningGoal.Gain('delta fin','delta fin',tf(25,[1 0])); % roll-off
Req3 = TuningGoal.Margins('delta fin',7,45); % margins
MaxGain = frd([2 200 200],[0.02 2 200]);
Req4 = TuningGoal.Gain('delta fin','az',MaxGain); % disturbance rejection

% Tuning
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Opt = systuneOptions('RandomStart',3);
rng('default')
[ST1,fSoft,~,Info] = ST0.systune([Req1,Req2,Req3,Req4],Opt);

Final: Soft = 1.5, Hard = -Inf, Iterations = 60
Final: Soft = 1.15, Hard = -Inf, Iterations = 148
Final: Soft = 1.15, Hard = -Inf, Iterations = 64
Final: Soft = 1.15, Hard = -Inf, Iterations = 103

Interpreting Results

systune run three optimizations from three different starting points and
returned the best overall result. The first output ST is an slTuner interface
representing the tuned control system. The second output fSoft contains the
final values of the four requirements for the best design.

fSoft

fSoft =

1.1477 1.1477 0.5458 1.1477

Requirements are normalized so a requirement is satisfied if and only if its
value is less than 1. Inspection of fSoft reveals that Requirements 1,2,4
are active and slightly violated while Requirement 3 (stability margins)
is satisfied.

Verifying Requirements

Use viewSpec to graphically inspect each requirement. This is useful to
understand whether small violations are acceptable or what causes large
violations. Make sure to provide the structure Info returned by systune
to properly account for scalings and other parameters computed by the
optimization algorithms. First verify the tracking requirement.

viewSpec(Req1,ST1,Info)
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We observe a slight violation across frequency, suggesting that setpoint
tracking will perform close to expectations. Similarly, verify the disturbance
rejection requirement.

viewSpec(Req4,ST1,Info)
legend('location','NorthWest')

Most of the violation is at low frequency with a small bump near 35 rad/s,
suggesting possible damped oscillations at this frequency. Finally, verify the
stability margin requirement.

viewSpec(Req3,ST1,Info)

This requirement is satisfied at all frequencies, with the smallest margins
achieved near the crossover frequency as expected. To see the actual margin
values at a given frequency, click on the red curve and read the values from
the data tip.

Evaluating Requirements

You can also use evalSpec to evaluate each requirement, that is, compute its
contribution to the soft and hard constraints. For example

[H1,f1] = evalSpec(Req1,ST1,Info);

returns the value f1 of the requirement and the underlying
frequency-weighted transfer function H1 used to computed it. You can verify
that f1matches the first entry of fSoft and coincides with the peak gain of H1.

[f1 fSoft(1) getPeakGain(H1,1e-6)]

ans =

1.1477 1.1477 1.1477

6-192



Validating Results

Analyzing System Responses

In addition to verifying requirements, you can perform basic open- and
closed-loop analysis using getIOTransfer and getLoopTransfer. For
example, verify tracking performance in the time domain by plotting the
response az to a step command azref for the tuned system ST1.

T = ST1.getIOTransfer('az ref','az');
step(T)

Also plot the open-loop response measured at the plant input delta fin.
You can use this plot to assess the classical gain and phase margins at the
plant input.

L = ST1.getLoopTransfer('delta fin',-1); % negative-feedback loop transfer
margin(L), grid

Soft vs Hard Requirements

So far we have treated all four requirements equally in the objective function.
Alternatively, you can use a mix of soft and hard constraints to differentiate
between must-have and nice-to-have requirements. For example, you could
treat Requirements 3,4 as hard constraints and optimize the first two
requirements subject to these constraints. For best results, do this only after
obtaining a reasonable design with all requirements treated equally.

[ST2,fSoft,gHard,Info] = ST1.systune([Req1 Req2],[Req3 Req4]);

Final: Soft = 1.3, Hard = 0.99921, Iterations = 204

fSoft

fSoft =

1.2972 1.2974
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gHard

gHard =

0.4764 0.9992

Here fSoft contains the final values of the first two requirements (soft
constraints) and gHard contains the the final values of the last two
requirements (hard constraints). The hard constraints are satisfied since all
entries of gHard are less than 1. As expected, the best value of the first two
requirements went up as the optimizer strived to strictly enforce the fourth
requirement.
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Using Parallel Computing to Accelerate Tuning
This example shows how to leverage the Parallel Computing Toolbox™ to
accelerate multi-start strategies for tuning fixed-structure control systems.

Background

Both systune and looptune use local optimization methods for tuning
the control architecture at hand. To mitigate the risk of ending up with a
locally optimal but globally poor design, it is recommended to run several
optimizations starting from different randomly generated initial points. If you
have a multi-core machine or have access to distributed computing resources,
you can significantly speed up this process using the Parallel Computing
Toolbox.

This example shows how to parallelize the tuning of an airframe autopilot
with looptune. See the example "Tuning of a Two-Loop Autopilot" for more
details about this application of looptune.

Autopilot Tuning

The airframe dynamics and autopilot are modeled in Simulink.

open_system('rct_airframe1')

The autopilot consists of two cascaded loops whose tunable elements include
two PI controller gains ("az Control" block) and one gain in the pitch-rate
loop ("q Gain" block). The vertical acceleration az should track the command
azref with a 1 second response time. Use slTunable to configure this tuning
task (see "Tuning of a Two-Loop Autopilot" example for details):

ST0 = slTunable('rct_airframe1',{'az Control','q Gain'});
ST0.addControl('delta fin');
ST0.addMeasurement({'az','q'});

% Design requirements
wc = [3,12]; % bandwidth
TrackReq = TuningGoal.Tracking('az ref','az',1); % tracking
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Parallel Tuning with LOOPTUNE

We are ready to tune the autopilot gains with looptune. To minimize the risk
of getting a poor-quality local minimum, run 30 optimizations starting from
30 randomly generated values of the three gains. Configure the looptune
options to enable parallel processing of these 30 runs:

rng('default')
Options = looptuneOptions('RandomStart',30,'UseParallel',true);

Next call looptune to launch the tuning algorithm. The 30 runs are
automatically distributed across available computing resources:

[ST,gam,Info] = ST0.looptune(wc,TrackReq,Options);

Starting parallel pool (parpool) using the 'local' profile ... connected to
Final: Failed to enforce closed-loop stability (max Re(s) = 0.042)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.051)
Final: Peak gain = 1.23, Iterations = 46
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.082)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.082)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.04)
Final: Peak gain = 61.9, Iterations = 72
Final: Peak gain = 1.23, Iterations = 42
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.039)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Peak gain = 1.23, Iterations = 90
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.042)
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Final: Peak gain = 1.23, Iterations = 46
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.082)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.039)
Final: Peak gain = 1.23, Iterations = 103
Final: Peak gain = 1.23, Iterations = 57
Final: Peak gain = 1.23, Iterations = 120

Most runs return 1.23 as optimal gain value, suggesting that this local
minimum has a wide region of attraction and is likely to be the global
optimum. Use showBlockValue to see the corresponding gain values:

showBlockValue(ST)

Block "rct_airframe1/az Control" =

1
Kp + Ki * ---

s

with Kp = 0.00165, Ki = 0.00166

Name: az_Control
Continuous-time PI controller in parallel form.

-----------------------------------

Block "rct_airframe1/q Gain" =

d =
u1

y1 1.985

Name: q_Gain
Static gain.

Plot the closed-loop response for this set of gains:
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T = ST.getIOTransfer('az ref','az');
step(T,5)
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What Is a Fixed-Structure Control System?
Fixed-structure control systems are control systems that have predefined
architectures and controller structures. For example,

• A single-loop SISO control architecture where the controller is a fixed-order
transfer function, a PID controller, or a PID controller plus a filter.

• A MIMO control architecture where the controller has fixed order and
structure. For example, a 2-by-2 decoupling matrix plus two PI controllers
is a MIMO controller of fixed order and structure.

• A multiple-loop SISO or MIMO control architecture, including nested or
cascaded loops, with multiple gains and dynamic components to tune.

You can use systune, looptune or hinfstruct for frequency-domain tuning
of virtually any SISO or MIMO feedback architecture to meet your design
requirements. You can use both approaches to tune fixed structure control
systems in either MATLAB or Simulink (requires Simulink Control Design).
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Difference Between Fixed-Structure Tuning and Traditional
H-Infinity Synthesis

All of the tuning commands systune, looptune, and hinfstruct tune the
controller parameters by optimizing the H∞ norm across a closed-loop system
(see [1]). However, these functions differ in important ways from traditional
H∞ methods.

Traditional H∞ synthesis (performed using the hinfsyn or loopsyn
commands) designs a full-order, centralized controller. Traditional H∞
synthesis provides no way to impose structure on the controller and often
results in a controller that has high-order dynamics. Thus, the results can be
difficult to map to your specific real-world control architecture. Additionally,
traditional H∞ synthesis requires you to express all design requirements in
terms of a single weighted MIMO transfer function.

In contrast, structured H∞ synthesis allows you to describe and tune the
specific control system with which you are working. You can specify your
control architecture, including the number and configuration of feedback
loops. You can also specify the complexity, structure, and parametrization
of each tunable component in your control system, such as PID controllers,
gains, and fixed-order transfer functions. Additionally, you can easily combine
requirements on separate closed-loop transfer functions.

Bibliography

[1] P. Apkarian and D. Noll, "Nonsmooth H-infinity Synthesis," IEEE
Transactions on Automatic Control, Vol. 51, Number 1, 2006, pp. 71-86.
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Structure of Control System for Tuning With looptune
looptune tunes the feedback loop illustrated below to meet default
requirements or requirements that you specify.

�

�

$ %

C represents the controller and G represents the plant. The sensor outputsy
(measurement signals) and actuator outputs u (control signals) define the
boundary between plant and controller. The controller is the portion of
your control system whose inputs are measurements, and whose outputs
are control signals. Conversely, the plant is the remainder—the portion of
your control system that receives control signals as inputs, and produces
measurements as outputs.

For example, in the control system of the following illustration, the controller
C receives the measurement y, and the reference signal r. The controller
produces the controls qL and qV as outputs.
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The controller C has a fixed internal structure. C includes a gain matrix D ,
the PI controllers PI_L and PI_V, and a summing junction. The looptune
command tunes free parameters of C such as the gains in D and the
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proportional and integral gains of PI_L and PI_V. You can also use looptune
to co-tune free parameters in both C and G.
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Set Up Your Control System for Tuning with looptune

In this section...

“Set Up Your Control System for looptunein MATLAB” on page 7-7

“Set Up Your Control System for looptune in Simulink” on page 7-7

Set Up Your Control System for looptunein MATLAB
To set up your control system in MATLAB for tuning with looptune:

1 Parameterize the tunable elements of your controller. You can use
predefined structures such as ltiblock.pid, ltiblock.gain, and
ltiblock.tf. Or, you can create your own structure from elementary
tunable parameters (realp).

2 Use model interconnection commands such as series and connect to build
a tunable genss model representing the controller C0.

3 Create a Numeric LTI model representing the plant G. For co-tuning the
plant and controller, represent the plant as a tunable genss model.

Set Up Your Control System for looptune in Simulink
To set up your control system in Simulink for tuning with systune (requires
Simulink Control Design software):

1 Use slTuner to create an interface to the Simulink model of your control
system. When you create the interface, you specify which blocks to tune in
your model.

2 Use addPoint to specify the control and measurement signals that define
the boundaries between plant and controller. Use addOpening to mark
optional loop-opening or signal injection sites for specifying and assessing
open-loop requirements.

The slTuner interface automatically linearizes your Simulink model. The
slTuner interface also automatically parametrizes the blocks that you specify
as tunable blocks. For more information about this linearization, see the
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slTuner reference page and “How Tuned Simulink Blocks Are Parameterized”
on page 6-40.

Related
Examples

• “Tune MIMO Control System for Specified Bandwidth” on page 7-9
• “Tuning Feedback Loops with LOOPTUNE” on page 7-32

Concepts • “Structure of Control System for Tuning With looptune” on page 7-5
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Tune MIMO Control System for Specified Bandwidth
This example shows how to tune the following control system to achieve a loop
crossover frequency between 0.1 and 1 rad/s, using looptune.
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The plant, G, is a two-input, two-output model (y is a two-element vector
signal). For this example, the transfer function of G is given by:

G s
s

  















1
75 1

87 8 86 4
108 2 109 6

. .
. .

.

This sample plant is based on the distillation column described in more detail
in the example Decoupling Controller for a Distillation Column.

To tune this control system, you first create a numeric model of the plant.
Then you create tunable models of the controller elements and interconnect
them to build a controller model. Then you use looptune to tune the free
parameters of the controller model. Finally, examine the performance
of the tuned system to confirm that the tuned controller yields desirable
performance.

Create a model of the plant.

s = tf('s');
G = 1/(75*s+1)*[87.8 -86.4; 108.2 -109.6];
G.InputName = {'qL','qV'};
G.OutputName = 'y';

When you tune the control system, looptune uses the channel names
G.InputName and G.OutputName to interconnect the plant and controller.
Therefore, assign these channel names to match the illustration. When you
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set G.OutputName = 'y', the G.OutputName is automatically expanded to
{'y(1)';'y(2)'}. This expansion occurs because G is a two-output system.

Represent the components of the controller.

D = ltiblock.gain('Decoupler',eye(2));
D.InputName = 'e';
D.OutputName = {'pL','pV'};

PI_L = ltiblock.pid('PI_L','pi');
PI_L.InputName = 'pL';
PI_L.OutputName = 'qL';

PI_V = ltiblock.pid('PI_V','pi');
PI_V.InputName = 'pV';
PI_V.OutputName = 'qV';

sum1 = sumblk('e = r - y',2);

The control system includes several tunable control elements. PI_L and PI_V
are tunable PI controllers. These elements represented by ltiblock.pid
models. The fixed control structure also includes a decoupling gain matrix
D, represented by a tunable ltiblock.gain model. When the control system
is tuned, D ensures that each output of G tracks the corresponding reference
signal r with minimal crosstalk.

Assigning InputName and OutputName values to these control elements allows
you to interconnect them to create a tunable model of the entire controller
C as shown.

���
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When you tune the control system, looptune uses these channel names
to interconnect C and G. The controller C also includes the summing
junction sum1. This a two-channel summing junction, because r and y are
vector-valued signals of dimension 2.

Connect the controller components.

C0 = connect(PI_L,PI_V,D,sum1,{'r','y'},{'qL','qV'});

C0 is a tunable genss model that represents the entire controller structure.
C0 stores the tunable controller parameters and contains the initial values
of those parameters.

Tune the control system.

The inputs to looptune are G and C0, the plant and initial controller models
that you created. The input wc = [0.1,1] sets the target range for the loop
bandwidth. This input specifies that the crossover frequency of each loop in
the tuned system fall between 0.1 and 1 rad/min.

wc = [0.1,1];
[G,C,gam,Info] = looptune(G,C0,wc);

Final: Peak gain = 0.949, Iterations = 27

The displayed Peak Gain = 0.949 indicates that looptune has found
parameter values that achieve the target loop bandwidth. looptune displays
the final peak gain value of the optimization run, which is also the output gam.
If gam is less than 1, all tuning requirements are satisfied. A value greater
than 1 indicates failure to meet some requirement. If gam exceeds 1, you can
increase the target bandwidth range or relax another tuning requirement.

looptune also returns the tuned controller model C. This model is the tuned
version of C0. It contains the PI coefficients and the decoupling matrix gain
values that yield the optimized peak gain value.

Display the tuned controller parameters.

showTunable(C)

Decoupler =

7-11



7 Tuning Fixed Control Architectures

d =
u1 u2

y1 1.075 -0.8273
y2 -1.581 1.328

Name: Decoupler
Static gain.
-----------------------------------
PI_L =

1
Kp + Ki * ---

s

with Kp = 2.82, Ki = 0.0398

Name: PI_L
Continuous-time PI controller in parallel form.
-----------------------------------
PI_V =

1
Kp + Ki * ---

s

with Kp = -1.94, Ki = -0.0303

Name: PI_V
Continuous-time PI controller in parallel form.

Check the time-domain response for the control system with the tuned
coefficients. To produce a plot, construct a closed-loop model of the tuned
control system. Plot the step response from reference to output.

T = connect(G,C,'r','y');
step(T)
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The decoupling matrix in the controller permits each channel of the
two-channel output signal y to track the corresponding channel of the
reference signal r, with minimal crosstalk. From the plot, you can how well
this requirement is achieved when you tune the control system for bandwidth
alone. If the crosstalk still exceeds your design requirements, you can use a
TuningGoal.Gain requirement object to impose further restrictions on tuning.

Examine the frequency-domain response of the tuned result as an alternative
method for validating the tuned controller.

loopview(G,C,Info)
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The first plot shows that the open-loop gain crossovers fall within the
specified interval [0.1,1]. This plot also includes the maximum and tuned
values of the sensitivity function S = (I – GC)–1 and complementary sensitivity
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T = I – S. The second and third plots show that the MIMO stability margins of
the tuned system (blue curve) do not exceed the upper limit (yellow curve).

Related
Examples

• “Decoupling Controller for a Distillation Column” on page 7-48

Concepts • “Structure of Control System for Tuning With looptune” on page 7-5
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What Is hinfstruct?
hinfstruct lets you use the frequency-domain methods of H∞ synthesis
to tune control systems that have predefined architectures and controller
structures.

To use hinfstruct, you describe your control system as a Generalized LTI
model that keeps track of the tunable components of your system. hinfstruct
tunes those parameters by minimizing the closed-loop gain from the system
inputs to the system outputs (the H∞ norm).

hinfstruct is the counterpart of hinfsyn for fixed-structure controllers. The
methodology and algorithm behind hinfstruct are described in [1].

7-16



Formulating Design Requirements as H-Infinity Constraints

Formulating Design Requirements as H-Infinity Constraints
Control design requirements are typically performance measures such as
response speed, control bandwidth, roll-off, and steady-state error. To use
hinfstruct, first express the design requirements as constraints on the
closed-loop gain.

You can formulate design requirements in terms of the closed-loop gain using
loop shaping. Loop shaping is a common systematic technique for defining
control design requirements for H∞ synthesis. In loop shaping, you first
express design requirements as open-loop gain requirements.

For example, a requirement of good reference tracking and disturbance
rejection is equivalent to high (>1) open-loop gain at low frequency. A
requirement of insensitivity to measurement noise or modeling error is
equivalent to a low (<1) open-loop gain at high frequency. You can then
convert these open-loop requirements to constraints on the closed-loop gain
using weighting functions.

This formulation of design requirements results in aH∞ constraint of the form:

H s  


1,

where H(s) is a closed-loop transfer function that aggregates and normalizes
the various requirements.

For an example of how to formulate design requirements for H∞ synthesis
using loop shaping, see “Fixed-Structure H-infinity Synthesis with
HINFSTRUCT” on page 7-105.

For more information about constructing weighting functions from design
requirements, see “H-Infinity Performance” on page 5-9.
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Structured H-Infinity Synthesis Workflow
Performing structured H∞ synthesis requires the following steps:

1 Formulate your design requirements as H∞ constraints, which are
constraints on the closed-loop gains from specific system inputs to specific
system outputs.

2 Build tunable models of the closed-loop transfer functions of Step 1.

3 Tune the control system using hinfstruct.

4 Validate the tuned control system.
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Build Tunable Closed-Loop Model for Tuning with hinfstruct
In the previous step you expressed your design requirements as a constraint
on the H∞ norm of a closed-loop transfer function H(s).

The next step is to create a Generalized LTI model of H(s) that includes all of
the fixed and tunable elements of the control system. The model also includes
any weighting functions that represent your design requirements. There are
two ways to obtain this tunable model of your control system:

• Construct the model using Control System Toolbox commands.

• Obtain the model from a Simulink model using Simulink Control Design
commands.

Constructing the Closed-Loop System Using Control
System Toolbox Commands
To construct the tunable generalized linear model of your closed-loop control
system in MATLAB:

1 Use commands such as tf, zpk, and ss to create numeric linear models
that represent the fixed elements of your control system and any weighting
functions that represent your design requirements.

2 Use tunable models (either Control Design Blocks or Generalized LTI
models) to model the tunable elements of your control system. For more
information about tunable models, see “Models with Tunable Coefficients”
in the Control System Toolbox User’s Guide.

3 Use model-interconnection commands such as series, parallel, and
connect to construct your closed-loop system from the numeric and tunable
models.

Example: Modeling a Control System With a Tunable PI
Controller and Tunable Filter
This example shows how to construct a tunable generalized linear model of
the following control system for tuning with hinfstruct.
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This block diagram represents a head-disk assembly (HDA) in a hard disk
drive. The architecture includes the plant G in a feedback loop with a PI
controller C and a low-pass filter, F = a/(s+a). The tunable parameters are
the PI gains of C and the filter parameter a.

The block diagram also includes the weighting functions LS and 1/LS, which
express the loop-shaping requirements. Let T(s) denote the closed-loop
transfer function from inputs (r,nw) to outputs (y,ew). Then, the H∞ constraint:

T s  


1

approximately enforces the target open-loop response shape LS. For this
example, the target loop shape is

LS

s

s
c
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This value of LS corresponds to the following open-loop response shape.

To tune the HDA control system with hinfstruct, construct a tunable model
of the closed-loop system T(s), including the weighting functions, as follows.

1 Load the plant G from a saved file.

load hinfstruct_demo G

G is a 9th-order SISO state-space (ss) model.

2 Create a tunable model of the PI controller.

You can use the predefined Control Design Block ltiblock.pid to
represent a tunable PI controller.

C = ltiblock.pid('C','pi');
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3 Create a tunable model of the low-pass filter.

Because there is no predefined Control Design Block for the filter F =
a/(s+a), use realp to represent the tunable filter parameter a. Then
create a tunable genss model representing the filter.

a = realp('a',1);
F = tf(a,[1 a]);

4 Specify the target loop shape LC.

wc = 1000;
s = tf('s');
LS = (1+0.001*s/wc)/(0.001+s/wc);

5 Label the inputs and outputs of all the components of the control system.

Labeling the I/Os allows you to connect the elements to build the closed-loop
system T(s).

Wn = 1/LS; Wn.InputName = 'nw'; Wn.OutputName = 'n';
We = LS; We.InputName = 'e'; We.OutputName = 'ew';
C.InputName = 'e'; C.OutputName = 'u';
F.InputName = 'yn'; F.OutputName = 'yf';

6 Specify the summing junctions in terms of the I/O labels of the other
components of the control system.

Sum1 = sumblk('e = r - yf');
Sum2 = sumblk('yn = y + n');

7 Use connect to combine all the elements into a complete model of the
closed-loop system T(s).

T0 = connect(G,Wn,We,C,F,Sum1,Sum2,{'r','nw'},{'y','ew'});

T0 is a genss object, which is a Generalized LTI model representing the
closed-loop control system with weighting functions. The Blocks property of
T0 contains the tunable blocks C and a.
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T0.Blocks

ans =

C: [1x1 ltiblock.pid]
a: [1x1 realp]

For more information about generalized models of control systems that
include both numeric and tunable components, see “Models with Tunable
Coefficients” in the Control System Toolbox documentation.

You can now use hinfstruct to tune the parameters of this control system.
See “Tune the Controller Parameters” on page 7-26.

Constructing the Closed-Loop System Using Simulink
Control Design Commands
If you have a Simulink model of your control system and Simulink Control
Design software, use slTuner to create an interface to the Simulink model
of your control system. When you create the interface, you specify which
blocks to tune in your model. The slTuner interface allows you to extract a
closed-loop model for tuning with hinfstruct.

Example: Creating a Weighted Tunable Model of Control
System Starting From a Simulink Model
This example shows how to construct a tunable generalized linear model of
the control system in the Simulink model rct_diskdrive.
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To create a generalized linear model of this control system (including
loop-shaping weighting functions):

1 Open the model.

open('rct_diskdrive');

2 Create an slTuner interface to the model. The interface allows you to
specify the tunable blocks and extract linearized open-loop and closed-loop
responses. (For more information about the interface, see the slTuner
reference page.)

ST0 = slTuner('rct_diskdrive',{'C','F'});

This command specifies that C and F are the tunable blocks in the model.
The slTuner interface automatically parametrizes these blocks. The
default parametrization of the transfer function block F is a transfer
function with two free parameters. Because F is a low-pass filter, you must
constrain its coefficients. To do so, specify a custom parameterization of F.

a = realp('a',1); % filter coefficient
setBlockParam(ST0,'F',tf(a,[1 a]));

3 Extract a tunable model of the closed-loop transfer function you want to
tune.

T0 = getIOTransfer(ST0,{'r','n'},{'y','e'});

This command returns a genss model of the linearized closed-loop transfer
function from the reference and noise inputs r,n to the measurement
and error outputs y,e. The error output is needed for the loop-shaping
weighting function.

4 Define the loop-shaping weighting functions and append them to T0.

wc = 1000;
s = tf('s');
LS = (1+0.001*s/wc)/(0.001+s/wc);

T0 = blkdiag(1,LS) * T0 * blkdiag(1,1/LS);
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The generalized linear model T0 is a tunable model of the closed-loop transfer
function T(s), discussed in “Example: Modeling a Control System With a
Tunable PI Controller and Tunable Filter” on page 7-19. T(s) is a weighted
closed-loop model of the control system of rct_diskdrive. Tuning T0 to
enforce the H∞ constraint

T s  


1

approximately enforces the target loop shape LS.

You can now use hinfstruct to tune the parameters of this control system.
See “Tune the Controller Parameters” on page 7-26.
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Tune the Controller Parameters
After you obtain the genss model representing your control system, use
hinfstruct to tune the tunable parameters in the genss model .

hinfstruct takes a tunable linear model as its input.

For example, you can tune controller parameters for the example discussed
in “Build Tunable Closed-Loop Model for Tuning with hinfstruct” on page
7-19 using the following command:

[T,gamma,info] = hinfstruct(T0);

Final: Peak gain = 1.56, Iterations = 131

This command returns the following outputs:

• T, a genss model object containing the tuned values of C and a.

• gamma, the minimum peak closed-loop gain of T achieved by hinfstruct.

• info, a structure containing additional information about the minimization
runs.
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Interpret the Outputs of hinfstruct

Output Model is Tuned Version of Input Model
T contains the same tunable components as the input closed-loop model T0.
However, the parameter values of T are now tuned to minimize the H∞ norm
of this transfer function.

Interpreting gamma
gamma is the smallest H∞ norm achieved by the optimizer. Examine gamma to
determine how close the tuned system is to meeting your design constraints.
If you normalize your H∞ constraints, a final gamma value of 1 or less indicates
that the constraints are met. A final gamma value exceeding 1 by a small
amount indicates that the constraints are nearly met.

The value of gamma that hinfstruct returns is a local minimum of the gain
minimization problem. For best results, use the RandomStart option to
hinfstruct to obtain several minimization runs. Setting RandomStart to an
integer N > 0 causes hinfstruct to run the optimization N additional times,
beginning from parameter values it chooses randomly. For example:

opts = hinfstructOptions('RandomStart',5);
[T,gamma,info] = hinfstruct(T0,opts);

You can examine gamma for each run to identify an optimization result that
meets your design requirements.

For more details about hinfstruct, its options, and its outputs, see the
hinfstruct and hinfstructOptions reference pages.
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Validate the Controller Design
To validate the hinfstruct control design, analyze the tuned output models
described in “Interpret the Outputs of hinfstruct” on page 7-27. Use these
tuned models to examine the performance of the tuned system.

Validating the Design in MATLAB
This example shows how to obtain the closed-loop step response of a system
tuned with hinfstruct in MATLAB.

You can use the tuned versions of the tunable components of your system
to build closed-loop or open-loop numeric LTI models of the tuned control
system. You can then analyze open-loop or closed-loop performance using
other Control System Toolbox tools.

In this example, create and analyze a closed-loop model of the HDA system
tuned in “Tune the Controller Parameters” on page 7-26. To do so, use
getIOTransfer to extract from the tuned control system the transfer function
between the step input and the measured output.

Try = getIOTransfer(T,'r','y');
step(Try)
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Validating the Design in Simulink
This example shows how to write tuned values to your Simulink model for
validation.

The slTuner interface linearizes your Simulink model. As a best practice,
validate the tuned parameters in your nonlinear model. You can use the
slTuner interface to do so.
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In this example, write tuned parameters to the rct_diskdrive system tuned
in “Tune the Controller Parameters” on page 7-26.

Make a copy of the slTuner description of the control system, to preserve
the original parameter values. Then propagate the tuned parameter values
to the copy.

ST = copy(ST0);
setBlockValue(ST,T);

This command writes the parameter values from the tuned, weighted
closed-loop model T to the corresponding parameters in the interface ST.

You can examine the closed-loop responses of the linearized version of the
control system represented by ST. For example:

Try = getIOTransfer(ST,'r','y');
step(Try)

7-30



Validate the Controller Design

Since hinfstruct tunes a linearized version of your system, you should also
validate the tuned controller in the full nonlinear Simulink model. To do so,
write the parameter values from the slTuner interface to the Simulink model.

writeBlockValue(ST)

You can now simulate the model using the tuned parameter values to validate
the controller design.
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Tuning Feedback Loops with LOOPTUNE
This example shows the basic workflow of tuning feedback loops with the
looptune command. looptune is similar to systune and meant to facilitate
loop shaping design by automatically generating the tuning requirements.

Engine Speed Control

This example uses a simple engine speed control application as illustration.
The control system consists of a single PID loop and the PID controller gains
must be tuned to adequately respond to step changes in the desired speed.
Specifically, we want the response to settle in less than 5 seconds with little
or no overshoot.

Figure 1: Engine Speed Control Loop

We use the following fourth-order model of the engine dynamics.

load rctExamples Engine
bode(Engine), grid

Specifying the Tunable Elements

We need to tune the four PID gains to achieve the desired performance. Use
the ltiblock.pid class to parameterize the PID controller.

PID0 = ltiblock.pid('SpeedController','pid')

PID0 =

Parametric continuous-time PID controller "SpeedController" with formula:

1 s
Kp + Ki * --- + Kd * --------
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s Tf*s+1

and tunable parameters Kp, Ki, Kd, Tf.

Type "pid(PID0)" to see the current value and "get(PID0)" to see all proper

Building a Tunable Model of the Feedback Loop

looptune tunes the generic SISO or MIMO feedback loop of Figure 2. This
feedback loop models the interaction between the plant and the controller.
Note that this is a positive feedback interconnection.

Figure 2: Generic Feedback Loop

For the speed control loop, the plant is the engine model and the controller
consists of the PID and the prefilter .

Figure 3: Feedback Loop for Engine Speed Control

To use looptune, create models for and in Figure 3. Assign names to the
inputs and outputs of each model to specify the feedback paths between plant
and controller. Note that the controller has two inputs: the speed reference
"r" and the speed measurement "speed".

F = tf(10,[1 10]); % prefilter

G = Engine;
G.InputName = 'throttle';
G.OutputName = 'speed';

C0 = PID0 * [F , -1];
C0.InputName = {'r','speed'};
C0.OutputName = 'throttle';
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Here C0 is a generalized state-space model (genss) that depends on the
tunable PID block PID0.

Tuning the Controller Parameters

You can now use looptune to tune the PID gains subject to a simple control
bandwidth requirement. To achieve the 5-second settling time, the gain
crossover frequency of the open-loop response should be approximately
1 rad/s. Given this basic requirement, looptune automatically shapes
the open-loop response to provide integral action, high-frequency roll-off,
and adequate stability margins. Note that you could specify additional
requirements to further constrain the design, see "Decoupling Controller for a
Distillation Column" for an example.

wc = 1; % target gain crossover frequency

[~,C,~,Info] = looptune(G,C0,wc);

Final: Peak gain = 0.92, Iterations = 3
Achieved target gain value TargetGain=1.

The final value is less than 1, indicating that the desired bandwidth was
achieved with adequate roll-off and stability margins. looptune returns the
tuned controller C. Use getBlockValue to retrieve the tuned value of the
PID block.

PIDT = getBlockValue(C,'SpeedController')

PIDT =

1 s
Kp + Ki * --- + Kd * --------

s Tf*s+1

with Kp = 0.000484, Ki = 0.00324, Kd = 0.000835, Tf = 1

Name: SpeedController
Continuous-time PIDF controller in parallel form.
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Validating Results

Use loopview to validate the design and visualize the loop shaping
requirements implicitly enforced by looptune.

clf, loopview(G,C,Info)

Next plot the closed-loop response to a step command in engine speed. The
tuned response satisfies our requirements.

T = connect(G,C,'r','speed'); % closed-loop transfer from r to speed
clf, step(T)
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Tuning Multi-Loop Control Systems
This example shows how to jointly tune the inner and outer loops of a cascade
architecture with the systune command.

Cascaded PID Loops

Cascade control is often used to achieve smooth tracking with fast disturbance
rejection. The simplest cascade architecture involves two control loops (inner
and outer) as shown in the block diagram below. The inner loop is typically
faster than the outer loop to reject disturbances before they propagate to
the outer loop.

open_system('rct_cascade')

Plant Models and Bandwidth Requirements

In this example, the inner loop plant G2 is

and the outer loop plant G1 is

G2 = zpk([],-2,3);
G1 = zpk([],[-1 -1 -1],10);

We use a PI controller in the inner loop and a PID controller in the outer loop.
The outer loop must have a bandwidth of at least 0.2 rad/s and the inner loop
bandwidth should be ten times larger for adequate disturbance rejection.

Tuning the PID Controllers with SYSTUNE

When the control system is modeled in Simulink, use the slTuner interface in
Simulink Control Design™ to set up the tuning task. List the tunable blocks,
mark the signals r and d2 as inputs of interest, and mark the signals y1 and
y2 as locations where to measure open-loop transfers and specify loop shapes.
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ST0 = slTuner('rct_cascade',{'C1','C2'});
addPoint(ST0,{'r','d2','y1','y2'})

You can query the current values of C1 and C2 in the Simulink model using
showTunable. The control system is unstable for these initial values as
confirmed by simulating the Simulink model.

showTunable(ST0)

Block 1: rct_cascade/C1 =

1
Kp + Ki * ---

s

with Kp = 0.1, Ki = 0.1

Name: C1
Continuous-time PI controller in parallel form.

-----------------------------------

Block 2: rct_cascade/C2 =

1
Kp + Ki * ---

s

with Kp = 0.1, Ki = 0.1

Name: C2
Continuous-time PI controller in parallel form.

Next use "LoopShape" requirements to specify the desired bandwidths for the
the inner and outer loops. Use as target loop shape for the outer loop to
enforce integral action with a gain crossover frequency at 0.2 rad/s:

% Outer loop bandwidth = 0.2
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s = tf('s');
Req1 = TuningGoal.LoopShape('y1',0.2/s); % loop transfer measured at y1
Req1.Name = 'Outer Loop';

Use for the inner loop to make it ten times faster (higher bandwidth) than
the outer loop. To constrain the inner loop transfer, make sure to open the
outer loop by specifying y1 as a loop opening:

% Inner loop bandwidth = 2
Req2 = TuningGoal.LoopShape('y2',2/s); % loop transfer measured at y2
Req2.Openings = 'y1'; % with outer loop opened at y1
Req2.Name = 'Inner Loop';

You can now tune the PID gains in C1 and C2 with systune:

[ST,fSoft,~,Info] = systune(ST0,[Req1,Req2]);

Final: Soft = 0.858, Hard = -Inf, Iterations = 113

Use showTunable to see the tuned PID gains.

showTunable(ST)

Block 1: rct_cascade/C1 =

1 s
Kp + Ki * --- + Kd * --------

s Tf*s+1

with Kp = 0.0502, Ki = 0.0186, Kd = 0.0436, Tf = 0.00425

Name: C1
Continuous-time PIDF controller in parallel form.

-----------------------------------

Block 2: rct_cascade/C2 =

1
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Kp + Ki * ---
s

with Kp = 0.72, Ki = 1.56

Name: C2
Continuous-time PI controller in parallel form.

Validating the Design

The final value is less than 1 which means that systune successfully met
both loop shape requirements. Confirm this by inspecting the tuned control
system ST with viewSpec

viewSpec([Req1,Req2],ST,Info)

Note that the inner and outer loops have the desired gain crossover
frequencies. To further validate the design, plot the tuned responses to a step
command r and step disturbance d2:

% Response to a step command
H = getIOTransfer(ST,'r','y1');
clf, step(H,30), title('Step command')

% Response to a step disturbance
H = getIOTransfer(ST,'d2','y1');
step(H,30), title('Step disturbance')

Once you are satisfied with the linear analysis results, use writeBlockValue
to write the tuned PID gains back to the Simulink blocks. You can then
conduct a more thorough validation in Simulink.

writeBlockValue(ST)
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Equivalent Workflow in MATLAB

If you do not have a Simulink model of the control system, you can perform
the same steps using LTI models of the plant and Control Design blocks to
model the tunable elements.

Figure 1: Cascade Architecture

First create parametric models of the tunable PI and PID controllers.

C1 = ltiblock.pid('C1','pid');
C2 = ltiblock.pid('C2','pi');

Then use loopswitch blocks to mark the loop opening locations y1 and y2.

LS1 = loopswitch('y1');
LS2 = loopswitch('y2');

Finally, create a closed-loop model T0 of the overall control system by closing
each feedback loop. The result is a generalized state-space model depending
on the tunable elements C1 and C2.

InnerCL = feedback(LS2*G2*C2,1);
T0 = feedback(G1*InnerCL*C1,LS1);
T0.InputName = 'r';
T0.OutputName = 'y1';

You can now tune the PID gains in C1 and C2 with systune.

[T,fSoft,~,Info] = systune(T0,[Req1,Req2]);

Final: Soft = 0.859, Hard = -Inf, Iterations = 90

As before, use getIOTransfer to compute and plot the tuned responses to a
step command r and step disturbance entering at the location y2:

% Response to a step command
H = getIOTransfer(T,'r','y1');
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clf, step(H,30), title('Step command')

% Response to a step disturbance
H = getIOTransfer(T,'y2','y1');
step(H,30), title('Step disturbance')

You can also plot the open-loop gains for the inner and outer loops to
validate the bandwitdth requirements. Note the -1 sign to compute the
negative-feedback open-loop transfer:

L1 = getLoopTransfer(T,'y1',-1); % crossover should be at .2
L2 = getLoopTransfer(T,'y2',-1,'y1'); % crossover should be at 2
bodemag(L2,L1,{1e-2,1e2}), grid
legend('Inner Loop','Outer Loop')
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PID Tuning for Setpoint Tracking vs. Disturbance Rejection
This example uses systune to explore trade-offs between setpoint tracking
and disturbance rejection when tuning PID controllers.

PID Tuning Trade-Offs

When tuning 1-DOF PID controllers, it is often impossible to achieve good
tracking and fast disturbance rejection at the same time. Assuming the
control bandwidth is fixed, faster disturbance rejection requires more gain
inside the bandwidth, which can only be achieved by increasing the slope
at the crossover frequency. Because a larger slope means a smaller phase
margin, this typically comes at the expense of more overshoot in the response
to setpoint changes.

Figure 1: Trade-off in 1-DOF PID Tuning.

This example uses systune to explore this trade-off and find the right
compromise for your application. See also pidtool for a more direct and
interactive way to make such trade-off (Transient behavior slider).

Tuning Setup

Consider the PI loop of Figure 2 with a load disturbance at the plant input.

Figure 2: PI Control Loop.

For this example we use the plant model

The PI controller has two parameters to tune: the proportional and integral
gains. The target control bandwidth is 1 rad/s.
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Construct a tunable model T0 of the closed-loop transfer from r to y. Use a
loopswitch block to mark the location u where the disturbance enters.

G = zpk(-5,[-1 -2 -10],10);
C = ltiblock.pid('C','pi');
LS = loopswitch('u');

T0 = feedback(G*LS*C,1);
T0.u = 'r'; T0.y = 'y';

The gain of the open-loop response is a key indicator of the feedback loop
behavior. The open-loop gain should be high (greater than one) inside
the control bandwidth to ensure good disturbance rejection, and should
be low (less than one) outside the control bandwidth to be insensitive to
measurement noise and unmodeled plant dynamics. Accordingly, use three
requirements to express the control objectives:

• "Tracking" requirement to specify a response time of about 2 seconds to
step changes in r.

• "MinLoopGain" requirement to keep the loop gain high before 0.5 rad/s

• "MaxLoopGain" requirement to limit the control bandwidth and force a
roll-off of -20 dB/decade past 4 rad/s

s = tf('s');
wc = 1; % target crossover frequency

% Tracking
R1 = TuningGoal.Tracking('r','y',2);

% Disturbance rejection
R2 = TuningGoal.MinLoopGain('u',wc/s);
R2.Focus = [0 0.5];

% Bandwidth and roll-off
R3 = TuningGoal.MaxLoopGain('u',4/s);

Tuning of 1-DOF PI Controller
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Using systune, you can now tune the PI gains to meet these requirements.
Treat the bandwidth and disturbance rejection goals as hard constraints and
optimize tracking subject to these constraints.

T1 = systune(T0,R1,[R2 R3]);

Final: Soft = 1.24, Hard = 0.99993, Iterations = 139

Verify that all three requirements are nearly met. The blue curves are
the achieved values and the yellow patches highlight regions where the
requirements are violated.

viewSpec([R1 R2 R3],T1)

Tracking vs. Rejection Trade-Off

To gain insight into this trade-off, increase the required loop gain by a factor
inside the control bandwidth (frequency band [0,0.5] rad/s). Re-tune the PI
gains for the values .

% Increase loop gain by factor 2
alpha = 2;
R2.MinGain = alpha*wc/s;
T2 = systune(T0,R1,[R2 R3]);

Final: Soft = 1.32, Hard = 0.99969, Iterations = 120

% Increase loop gain by factor 5
alpha = 5;
R2.MinGain = alpha*wc/s;
T3 = systune(T0,R1,[R2 R3]);

Final: Soft = 1.52, Hard = 0.99993, Iterations = 147

Now compare the responses to a step command r and to a step disturbance d
entering at the plant input u.

clf, step(T1,T2,T3,10)
title('Setpoint tracking')
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legend('\alpha = 1','\alpha = 2','\alpha = 5')

% Compute closed-loop transfer from u to y
D1 = getIOTransfer(T1,'u','y');
D2 = getIOTransfer(T2,'u','y');
D3 = getIOTransfer(T3,'u','y');
step(D1,D2,D3,10)
title('Disturbance rejection')
legend('\alpha = 1','\alpha = 2','\alpha = 5')

Note how disturbance rejection improves as alpha increases, but only at the
expense of increased overshoot and oscillations in setpoint tracking. Plot the
open-loop responses for the three designs, and note how the slope at crossover
(0dB) increases with alpha.

L1 = getLoopTransfer(T1,'u');
L2 = getLoopTransfer(T2,'u');
L3 = getLoopTransfer(T3,'u');
bodemag(L1,L2,L3,{1e-2,1e2}), grid
title('Open-loop response')
legend('\alpha = 1','\alpha = 2','\alpha = 5')

Which design is most suitable depends on the primary purpose of the feedback
loop you are tuning.

Tuning of 2-DOF PI Controller

If you cannot compromise tracking to improve disturbance rejection, consider
using a 2-DOF architecture instead. A 2-DOF PI controller is capable of fast
disturbance rejection without significant increase of overshoot in setpoint
tracking.
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Figure 3: 2-DOF PI Control Loop.

Use the ltiblock.pid2 object to parameterize the 2-DOF PI controller and
construct a tunable model T0 of the closed-loop system in Figure 3.

C = ltiblock.pid2('C','pi');

T0 = feedback(G*LS*C,1,2,1,+1);
T0 = T0(:,1);
T0.u = 'r'; T0.y = 'y';

Next tune the 2-DOF PI controller for the largest loop gain tried earlier ( ).

% Minimum loop gain inside bandwidth (for disturbance rejection)
alpha = 5;
R2.MinGain = alpha*wc/s;

% Tune 2-DOF PI controller
T4 = systune(T0,R1,[R2 R3]);

Final: Soft = 1.31, Hard = 0.99996, Iterations = 123

Compare the setpoint tracking and disturbance rejection properties of the
1-DOF and 2-DOF designs for .

clf, step(T3,'b',T4,'g--',10)
title('Setpoint tracking')
legend('1-DOF','2-DOF')

D4 = getIOTransfer(T4,'u','y');
step(D3,'b',D4,'g--',10)
title('Disturbance rejection')
legend('1-DOF','2-DOF')

The responses to a step disturbance are identical but the 2-DOF controller
eliminates the overshoot in the response to a setpoint change. Compare the
tuned 1-DOF and 2-DOF PI controllers and observe how the proportional
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and integral gains are nearly the same, the main difference coming from
the setpoint weight b.

showTunable(T3) % 1-DOF PI

C =

1
Kp + Ki * ---

s

with Kp = 1.94, Ki = 2.13

Name: C
Continuous-time PI controller in parallel form.

showTunable(T4) % 2-DOF PI

C =

1 s
u = Kp (b*r-y) + Ki --- (r-y) + Kd -------- (c*r-y)

s Tf*s+1

with Kp = 1.943, Ki = 2.1264, Kd = 0, Tf = 1, b = 0.32476, c = 1.

Continuous-time 2-DOF PID controller.
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Decoupling Controller for a Distillation Column
This example shows how to use Robust Control Toolbox™ to decouple the two
main feedback loops in a distillation column.

Distillation Column Model

This example uses a simple model of the distillation column shown below.

Figure 1: Distillation Column

In the so-called LV configuration, the controlled variables are the
concentrations yD and yB of the chemicals D (tops) and B (bottoms), and
the manipulated variables are the reflux L and boilup V. This process
exhibits strong coupling and large variations in steady-state gain for some
combinations of L and V. For more details, see Skogestad and Postlethwaite,
Multivariable Feedback Control.

The plant is modeled as a first-order transfer function with inputs L,V and
outputs yD,yB:

s = tf('s','TimeUnit','minutes');
G = [87.8 -86.4 ; 108.2 -109.6]/(75*s+1);
G.InputName = {'L','V'};
G.OutputName = {'yD','yB'};

Control Architecture

The control objectives are as follows:

• Independent control of the tops and bottoms concentrations by ensuring
that a change in the tops setpoint Dsp has little impact on the bottoms
concentration B and vice versa

• Response time of about 15 minutes
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• Fast rejection of input disturbances affecting the effective reflux L and
boilup V

To achieve these objectives we use the control architecture shown below. This
architecture consists of a static decoupling matrix DM in series with two PI
controllers for the reflux L and boilup V.

open_system('rct_distillation')

Controller Tuning in Simulink with LOOPTUNE

The looptune command provides a quick way to tune MIMO feedback loops.
When the control system is modeled in Simulink, you just specify the tuned
blocks, the control and measurement signals, and the desired bandwidth,
and looptune automatically sets up the problem and tunes the controller
parameters. looptune shapes the open-loop response to provide integral
action, roll-off, and adequate MIMO stability margins.

Use the slTuner interface to specify the tuned blocks, the controller I/Os, and
signals of interest for closed-loop validation.

ST0 = slTuner('rct_distillation',{'PI_L','PI_V','DM'});

% Signals of interest
addPoint(ST0,{'r','dL','dV','L','V','y'})

Use TuningGoal objects to express the design requirements. Specify that each
loop should respond to a step command in about 15 minutes with minimum
cross-coupling.

TR = TuningGoal.Tracking('r','y',15);

Set the control bandwidth by using [0.1,0.5] as gain crossover band for the
open-loop response.

wc = [0.1,0.5];
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To enforce fast disturbance rejection, specify that the disturbance attenuation
factor should be at least 20 dB at 0.1 rad/s, increasing to infinity at 0 rad/s
since the controller has integral action.

DR = TuningGoal.Rejection({'L','V'},1/s);
DR.Focus = [0 0.1]; % enforced between 0 and 0.1 rad/s

viewSpec(DR)

Next use looptune to tune the controller blocks PI_L, PI_V, and DM subject to
these requirements.

Controls = {'L','V'};
Measurements = 'y';
[ST,gam,Info] = looptune(ST0,Controls,Measurements,wc,TR,DR);

Final: Peak gain = 1, Iterations = 67
Achieved target gain value TargetGain=1.

The final value is near 1 which indicates that all requirements were met. Use
loopview to check the resulting design. The responses should stay outside
the shaded areas.

loopview(ST,Info)

Use getIOTransfer to access and plot the closed-loop responses from reference
and disturbance to the tops and bottoms concentrations. The tuned responses
show a good compromise between tracking and disturbance rejection.

clf
Ttrack = getIOTransfer(ST,'r','y');
step(Ttrack,40), grid, title('Setpoint tracking')

Treject = getIOTransfer(ST,{'dV','dL'},'y');
step(Treject,40), grid, title('Disturbance rejection')
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Equivalent Workflow in MATLAB

If you do not have a Simulink model of the control system, you can use LTI
objects and Control Design blocks to create a MATLAB representation of
the following block diagram.

Figure 2: Block Diagram of Control System

First parameterize the tunable elements using Control Design blocks. Use
the ltiblock.gain block to parameterize DM:

DM = ltiblock.gain('Decoupler',eye(2));

This creates a 2x2 static gain with four tunable parameters. Similarly, use
the ltiblock.pid block to parameterize the two PI controllers:

PI_L = ltiblock.pid('PI_L','pi'); PI_L.TimeUnit = 'minutes';
PI_V = ltiblock.pid('PI_V','pi'); PI_V.TimeUnit = 'minutes';

At this point, the tunable elements are over-parameterized because
multiplying DM by two and dividing the PI coefficients by two does not change
the overall controller. To eliminate redundant parameters, normalize the PI
controllers by fixing their proportional gain Kp to 1:

PI_L.Kp.Value = 1; PI_L.Kp.Free = false;
PI_V.Kp.Value = 1; PI_V.Kp.Free = false;

Next construct a model C0 of the controller in Figure 2.

C0 = blkdiag(PI_L,PI_V) * DM * [eye(2) -eye(2)];

% Note: I/O names should be consistent with those of G
C0.InputName = {'Dsp','Bsp','yD','yB'};
C0.OutputName = {'L','V'};
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Now tune the controller parameters with looptune as done previously.

% Tracking requirement
TR = TuningGoal.Tracking({'Dsp','Bsp'},{'yD','yB'},15);

% Disturbance rejection requirement
DR = TuningGoal.Rejection({'L','V'},1/s);
DR.Focus = [0 0.1];

% Crossover band
wc = [0.1,0.5];

[~,C] = looptune(G,C0,wc,TR,DR);

Final: Peak gain = 1, Iterations = 78
Achieved target gain value TargetGain=1.

To validate the design, close the loop with the tuned compensator C and
simulate the step responses for setpoint tracking and disturbance rejection.
Also compare the open- and closed-loop disturbance rejection characteristics
in the frequency domain.

Tcl = connect(G,C,{'Dsp','Bsp','L','V'},{'yD','yB'});

Ttrack = Tcl(:,[1 2]);
step(Ttrack,40), grid, title('Setpoint tracking')

Treject = Tcl(:,[3 4]);
Treject.InputName = {'dL','dV'};
step(Treject,40), grid, title('Disturbance rejection')

clf, sigma(G,Treject), grid
title('Rejection of input disturbances')
legend('Open-loop','Closed-loop')
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The results are similar to those obtained in Simulink.
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Tuning of a Digital Motion Control System
This example shows how to use Robust Control Toolbox™ to tune a digital
motion control system.

Motion Control System

The motion system under consideration is shown below.

Figure 1: Digital motion control hardware

This device could be part of some production machine and is intended to move
some load (a gripper, a tool, a nozzle, or anything else that you can imagine)
from one angular position to another and back again. This task is part of the
"production cycle" that has to be completed to create each product or batch
of products.

The digital controller must be tuned to maximize the production speed of the
machine without compromising accuracy and product quality. To do this,
we first model the control system in Simulink using a 4th-order model of
the inertia and flexible shaft:

open_system('rct_dmc')

The "Tunable Digital Controller" consists of a gain in series with a lead/lag
controller.

Figure 2: Digital controller

Tuning is complicated by the presence of a flexible mode near 350 rad/s
in the plant:
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G = linearize('rct_dmc','rct_dmc/Plant Model');
bode(G,{10,1e4}), grid

Compensator Tuning

We are seeking a 0.5 second response time to a step command in angular
position with minimum overshoot. This corresponds to a target bandwidth
of approximately 5 rad/s. The looptune command offers a convenient way
to tune fixed-structure compensators like the one in this application. To use
looptune, first instantiate the slTuner interface to automatically acquire the
control structure from Simulink. Note that the signals of interest are already
marked as Linear Analysis Points in the Simulink model.

ST0 = slTuner('rct_dmc',{'Gain','Leadlag'});

Next use looptune to tune the compensator parameters for the target gain
crossover frequency of 5 rad/s:

Measurement = 'Measured Position'; % controller input
Control = 'Leadlag'; % controller output
ST1 = looptune(ST0,Control,Measurement,5);

Final: Peak gain = 0.975, Iterations = 21
Achieved target gain value TargetGain=1.

A final value below or near 1 indicates success. Inspect the tuned values of
the gain and lead/lag filter:

showBlockValue(ST1)

AnalysisPoints_ =

d =
u1 u2 u3 u4 u5

y1 1 0 0 0 0
y2 0 1 0 0 0
y3 0 0 1 0 0
y4 0 0 0 1 0
y5 0 0 0 0 1
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Name: AnalysisPoints_
Static gain.
-----------------------------------
Gain =

d =
u1

y1 2.753e-06

Name: Gain
Static gain.
-----------------------------------
Leadlag =

30.54 s + 59.01
---------------

s + 18.94

Name: Leadlag
Continuous-time transfer function.

Design Validation

To validate the design, use the slTuner interface to quickly access the
closed-loop transfer functions of interest and compare the responses before
and after tuning.

T0 = getIOTransfer(ST0,'Reference','Measured Position');
T1 = getIOTransfer(ST1,'Reference','Measured Position');
step(T0,T1), grid
legend('Original','Tuned')

The tuned response has significantly less overshoot and satisfies the
response time requirement. However these simulations are obtained using
a continuous-time lead/lag compensator (looptune operates in continuous
time) so we need to further validate the design in Simulink using a digital
implementation of the lead/lag compensator. Use writeBlockValue to apply
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the tuned values to the Simulink model and automatically discretize the
lead/lag compensator to the rate specified in Simulink.

writeBlockValue(ST1)

You can now simulate the response of the continuous-time plant with the
digital controller:

sim('rct_dmc'); % angular position logged in "yout" variable
t = yout.time;
y = yout.signals.values;
step(T1), hold, plot(t,y,'r--')
legend('Continuous','Hybrid (Simulink)')

Current plot held

The simulations closely match and the coefficients of the digital lead/lag can
be read from the "Leadlag" block in Simulink.

Tuning an Additional Notch Filter

Next try to increase the control bandwidth from 5 to 50 rad/s. Because of
the plant resonance near 350 rad/s, the lead/lag compensator is no longer
sufficient to get adequate stability margins and small overshoot. One remedy
is to add a notch filter as shown in Figure 3.

Figure 3: Digital Controller with Notch Filter

To tune this modified control architecture, create an slTuner instance with
the three tunable blocks.

ST0 = slTuner('rct_dmcNotch',{'Gain','Leadlag','Notch'});

By default the "Notch" block is parameterized as any second-order transfer
function. To retain the notch structure
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specify the coefficients as real parameters and create a parametric model N of
the transfer function shown above:

wn = realp('wn',300);
zeta1 = realp('zeta1',1); zeta1.Maximum = 1; % zeta1 <= 1
zeta2 = realp('zeta2',1); zeta2.Maximum = 1; % zeta2 <= 1
N = tf([1 2*zeta1*wn wn^2],[1 2*zeta2*wn wn^2]); % tunable notch filter

Then associate this parametric notch model with the "Notch" block in the
Simulink model. Because the control system is tuned in the continuous time,
you can use a continuous-time parameterization of the notch filter even
though the "Notch" block itself is discrete.

setBlockParam(ST0,'Notch',N);

Next use looptune to jointly tune the "Gain", "Leadlag", and "Notch" blocks
with a 50 rad/s target crossover frequency. To eliminate residual oscillations
from the plant resonance, specify a target loop shape with a -40 dB/decade
roll-off past 50 rad/s.

% Specify target loop shape with a few frequency points
Freqs = [5 50 500];
Gains = [10 1 0.01];
TLS = TuningGoal.LoopShape('Notch',frd(Gains,Freqs));

Measurement = 'Measured Position'; % controller input
Control = 'Notch'; % controller output
ST2 = looptune(ST0,Control,Measurement,TLS);

Final: Peak gain = 1.05, Iterations = 71

The final gain is close to 1, indicating that all requirements are met. Compare
the closed-loop step response with the previous designs.

T2 = getIOTransfer(ST2,'Reference','Measured Position');
clf
step(T0,T1,T2,1.5), grid
legend('Original','Lead/lag','Lead/lag + notch')
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To verify that the notch filter performs as expected, evaluate the total
compensator C and the open-loop response L and compare the Bode responses
of G, C, L:

% Get tuned block values (in the order blocks are listed in ST2.TunedBlocks
[g,LL,N] = getBlockValue(ST2);
C = N * LL * g;

L = getLoopTransfer(ST2,'Notch',-1);

bode(G,C,L,{1e1,1e3}), grid
legend('G','C','L')

This Bode plot confirms that the plant resonance has been correctly "notched
out."

Discretizing the Notch Filter

Again use writeBlockValue to discretize the tuned lead/lag and notch
filters and write their values back to Simulink. Compare the MATLAB and
Simulink responses:

writeBlockValue(ST2)

sim('rct_dmcNotch');
t = yout.time;
y = yout.signals.values;
step(T2), hold, plot(t,y,'r--')
legend('Continuous','Hybrid (Simulink)')

Current plot held

The Simulink response exhibits small residual oscillations. The notch filter
discretization is the likely culprit because the notch frequency is close to the

7-59



7 Tuning Fixed Control Architectures

Nyquist frequency pi/0.002=1570 rad/s. By default the notch is discretized
using the ZOH method. Compare this with the Tustin method prewarped at
the notch frequency:

wn = damp(N); % natural frequency of the notch filter
Ts = 0.002; % sample time of discrete notch filter

Nd1 = c2d(N,Ts,'zoh');
Nd2 = c2d(N,Ts,'tustin',c2dOptions('PrewarpFrequency',wn(1)));

clf, bode(N,Nd1,Nd2)
legend('Continuous','Discretized with ZOH','Discretized with Tustin',...

'Location','NorthWest')

The ZOH method has significant distortion and prewarped Tustin should
be used instead. To do this, specify the desired rate conversion method for
the notch filter block:

setBlockRateConversion(ST2,'Notch','tustin',wn(1))

writeBlockValue(ST2)

writeBlockValue now uses Tustin prewarped at the notch frequency to
discretize the notch filter and write it back to Simulink. Verify that this gets
rid of the oscillations.

sim('rct_dmcNotch');
t = yout.time;
y = yout.signals.values;
step(T2), hold, plot(t,y,'r--')
legend('Continuous','Hybrid (Simulink)')

Current plot held

Discrete-Time Tuning
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Alternatively, you can tune the controller directly in discrete time to avoid
discretization issues with the notch filter. To do this, specify that the
Simulink model should be linearized and tuned at the controller sample time
of 0.002 seconds:

ST0.Ts = 0.002;

To prevent high-gain control and saturations, add a requirement that limits
the gain from reference to control signal (output of Notch block).

GL = TuningGoal.Gain('Reference','Notch',0.01);

Now retune the controller at the specified sampling rate and verify the tuned
open- and closed-loop responses.

ST2 = looptune(ST0,Control,Measurement,TLS,GL);

% Closed-loop responses
T2 = getIOTransfer(ST2,'Reference','Measured Position');
clf
step(T0,T1,T2,1.5), grid
legend('Original','Lead/lag','Lead/lag + notch')

Final: Peak gain = 1.04, Iterations = 34

% Open-loop responses
[g,LL,N] = getBlockValue(ST2);
C = N * LL * g;
L = getLoopTransfer(ST2,'Notch',-1);
bode(G,C,L,{1e1,2e3}), grid
legend('G','C','L')

The results are similar to those obtained when tuning the controller
in continuous time. Now validate the digital controller against the
continuous-time plant in Simulink.

writeBlockValue(ST2)
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sim('rct_dmcNotch');
t = yout.time;
y = yout.signals.values;
step(T2), hold, plot(t,y,'r--')
legend('Discrete','Hybrid (Simulink)')

Current plot held

This time, the hybrid response closely matches its discrete-time approximation
and no further adjustment of the notch filter is required.
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Multi-Loop PID Control of a Robot Arm
This example shows how to use looptune to tune a multi-loop controller for
a 4-DOF robotic arm manipulator.

Robotic Arm Model and Controller

This example uses the four degree-of-freedom robotic arm shown below. This
arm consists of four joints labeled from base to tip: "Turntable", "Bicep",
"Forearm", and "Wrist". Each joint is actuated by a DC motor except for the
Bicep joint which uses two DC motors in tandem.

Figure 1: Robotic arm manipulator.

Open the Simulink model of the robot arm.

open_system('rct_robotarm')

The controller consists of four PID controllers (one per joint). Each PID
controller is implemented using the "2-DOF PID Controller" block from the
Simulink library (see PID Tuning for Setpoint Tracking vs. Disturbance
Rejection example for motivation).

Figure 2: Controller structure.

Typically, such multi-loop controllers are tuned sequentially by tuning one
PID loop at a time and cycling through the loops until the overall behavior
is satisfactory. This process can be time consuming and is not guaranteed
to converge to the best overall tuning. Alternatively, you can use systune
or looptune to jointly tune all four PID loops subject to system-level
requirements such as response time and minimum cross-coupling.
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In this example, the arm must move to a particular configuration in about 1
second with smooth angular motion at each joint. The arm starts in a fully
extended vertical position with all joint angles at zero. The end configuration
is specified by the angular positions: Turntable = 60 deg, Bicep = -10 deg,
Forearm = 60 deg, Wrist = 90 deg. The angular trajectories for the original
PID settings are shown below. Clearly the response is too sluggish and the
forearm is wobbling.

Figure 3: Untuned angular response.

Linearizing the Plant

The robot arm dynamics are nonlinear. To understand whether the arm
can be controlled with one set of PID gains, linearize the plant at various
points (snapshot times) along the trajectory of interest. Here "plant" refers
to the dynamics between the control signals (outputs of PID blocks) and the
measurement signals (output of "Robot Arm" block).

SnapshotTimes = 0:1:5;
% Plant is from PID outputs to Robot Arm outputs
LinIOs = [...

linio('rct_robotarm/Controller/TurntablePID',1,'openinput'),...
linio('rct_robotarm/Controller/BicepPID',1,'openinput'),...
linio('rct_robotarm/Controller/ForearmPID',1,'openinput'),...
linio('rct_robotarm/Controller/WristPID',1,'openinput'),...
linio('rct_robotarm/Robot Arm',1,'output')];

LinOpt = linearizeOptions('SampleTime',0); % seek continuous-time model
G = linearize('rct_robotarm',LinIOs,SnapshotTimes,LinOpt);

size(G)

6x1 array of state-space models.
Each model has 4 outputs, 4 inputs, and between 0 and 13 states.

The robot arm model linearizes to zero at t=0 due to the Bicep and Forearm
joints hitting their mechanical limits:
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getPeakGain(G(:,:,1))

ans =

0

Plot the gap between the linearized models at t=1,2,3,4 seconds and the final
model at t=5 seconds.

G5 = G(:,:,end); % t=5
G5.SamplingGrid = [];
sigma(G5,G(:,:,2:5)-G5,{1e-3,1e3}), grid
title('Variation of linearized dynamics along trajectory')
legend('Linearization at t=5 s','Absolute variation',...

'location','SouthWest')

While the dynamics vary significantly at low and high frequency, the variation
drops to less than 10% near 10 rad/s, which is roughly the desired control
bandwidth. Small plant variations near the target gain crossover frequency
suggest that we can control the arm with a single set of PID gains and need
not resort to gain scheduling.

Tuning the PID Controllers with LOOPTUNE

With looptune, you can directly tune all four PID loops to achieve
the desired response time with minimal loop interaction and adequate
MIMO stability margins. The controller is tuned in continuous time and
automatically discretized when writing the PID gains back to Simulink. Use
the slTuner interface to specify which blocks must be tuned and to locate
the plant/controller boundary.

% Linearize the plant at t=3s
tLinearize = 3;

% Create slTuner interface
TunedBlocks = {'TurntablePID','BicepPID','ForearmPID','WristPID'};
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ST0 = slTuner('rct_robotarm',TunedBlocks,tLinearize);

% Mark outputs of PID blocks as plant inputs
addPoint(ST0,TunedBlocks)

% Mark joint angles as plant outputs
addPoint(ST0,'Robot Arm')

In its simplest use, looptune only needs to know the target control bandwidth,
which should be at least twice the reciprocal of the desired response time.
Here the desired response time is 1 second so try a target bandwidth of 5 rad/s
(bearing in mind that the plant dynamics vary least near 10 rad/s).

wc = 5; % target gain crossover frequency
Controls = TunedBlocks; % actuator commands
Measurements = 'Robot Arm'; % joint angle measurements
ST1 = looptune(ST0,Controls,Measurements,wc);

Final: Peak gain = 1, Iterations = 60
Some closed-loop poles are marginally stable (decay rate near 1e-07)

Achieved target gain value TargetGain=1.

A final value near or below 1 indicates that looptune achieved the requested
bandwidth. Compare the responses to a step command in angular position
for the initial and tuned controllers.

RefSignals = {'tREF','bREF','fREF','wREF'};
T0 = getIOTransfer(ST0,RefSignals,'Robot Arm');
T1 = getIOTransfer(ST1,RefSignals,'Robot Arm');

opt = timeoptions; opt.IOGrouping = 'all'; opt.Grid = 'on';
stepplot(T0,'b--',T1,'r',4,opt)
legend('Initial','Tuned','location','SouthEast')

The four curves settling near y=1 represent the step responses of each joint,
and the curves settling near y=0 represent the cross-coupling terms. The
tuned controller is a clear improvement but should ideally settle faster with
less overshoot.
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Exploiting the Second Degree of Freedom

The 2-DOF PID controllers have a feedforward and a feedback component.

Figure 4: Two degree-of-freedom PID controllers.

By default, looptune only tunes the feedback loop and does not "see" the
feedforward component. This can be confirmed by verifying that the and
parameters of the PID controllers remain set to their initial value (use
showTunable for this purpose). To take advantage of the feedforward action
and reduce overshoot, replace the bandwidth target by an explicit tracking
requirement from reference angles to joint angles.

TR = TuningGoal.Tracking(RefSignals,'Robot Arm',0.5);
ST2 = looptune(ST0,Controls,Measurements,TR);

Final: Peak gain = 1.06, Iterations = 74

T2 = getIOTransfer(ST2,RefSignals,'Robot Arm');
stepplot(T1,'r--',T2,'g',4,opt)
legend('1-DOF tuning','2-DOF tuning','location','SouthEast')

The 2-DOF tuning reduces overshoot and takes advantage of the and
parameters as confirmed by inspecting the tuned PID gains:

showTunable(ST2)

Block 1: rct_robotarm/Controller/TurntablePID =

1 s
u = Kp (b*r-y) + Ki --- (r-y) + Kd -------- (c*r-y)

s Tf*s+1

with Kp = 12.6319, Ki = 8.6106, Kd = 0.60222, Tf = 0.023654, b = 0.88954,
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Continuous-time 2-DOF PID controller.

-----------------------------------

Block 2: rct_robotarm/Controller/BicepPID =

1 s
u = Kp (b*r-y) + Ki --- (r-y) + Kd -------- (c*r-y)

s Tf*s+1

with Kp = 12.0761, Ki = 7.196, Kd = 1.5089, Tf = 0.45909, b = 0.69582, c

Continuous-time 2-DOF PID controller.

-----------------------------------

Block 3: rct_robotarm/Controller/ForearmPID =

1 s
u = Kp (b*r-y) + Ki --- (r-y) + Kd -------- (c*r-y)

s Tf*s+1

with Kp = 20.009, Ki = 39.6063, Kd = 1.0362, Tf = 0.013586, b = 0.57671,

Continuous-time 2-DOF PID controller.

-----------------------------------

Block 4: rct_robotarm/Controller/WristPID =

1 s
u = Kp (b*r-y) + Ki --- (r-y) + Kd -------- (c*r-y)

s Tf*s+1

with Kp = 28.6535, Ki = 8.5014, Kd = 0.9966, Tf = 0.012955, b = 0.93808,

Continuous-time 2-DOF PID controller.
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Validating the Tuned Controller

The tuned linear responses look satisfactory so write the tuned values of the
PID gains back to the Simulink blocks and simulate the overall maneuver.
The simulation results appear in Figure 5.

writeBlockValue(ST2)

Figure 5: Tuned angular response.

The responses look good except for the Bicep joint whose response is somewhat
sluggish and jerky. It is tempting to blame this discrepancy on nonlinear
effects, but this is in fact due to cross-coupling effects between the Forearm
and Bicep joints. To see this, plot the step response of these two joints for the
actual step changes occurring during the maneuver (-10 deg for the Bicep
joint and 60 deg for the Forearm joint).

H2 = T2(2:3,2:3) * diag([-10 60]); % scale by step amplitude
H2.u = {'Bicep','Forearm'};
H2.y = {'Bicep','Forearm'};
step(H2,5), grid

When brought to scale, the first row of plots show that a 60-degree step change
in Forearm position has a sizeable and lasting impact on the Bicep position.
This explains the sluggish Bicep response observed when simultaneously
moving all four joints.

Refining The Design

To improve the Bicep response for this specific arm maneuver, we must keep
the cross-couplings effects small relative to the final angular displacements
in each joint. To do this, scale the cross-coupling terms in the tracking
requirement by the reference angle amplitudes.

JointDisp = [60 10 60 90]; % commanded angular displacements, in degrees
TR.InputScaling = JointDisp;
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To prevent jerky transients and avoid overloading the motors, limit the
control bandwidth by imposing -20 dB/decade roll-off past 20 rad/s. Finally,
explicitly limit the overshoot to 5%.

s = tf('s');
RO = TuningGoal.MaxGain(RefSignals,'Robot Arm',20/s);
OS = TuningGoal.Overshoot(RefSignals,'Robot Arm',5);

Retune the controller with all three requirements in force

ST3 = looptune(ST0,Controls,Measurements,TR,RO,OS);

Final: Peak gain = 1.06, Iterations = 159

Compare the scaled responses with the previous design. Notice the significant
reduction of the coupling between Forearm/Wrist and Bicep motion, both in
peak value and total energy.

T2s = diag(1./JointDisp) * T2 * diag(JointDisp);
T3s = diag(1./JointDisp) * getIOTransfer(ST3,RefSignals,'Robot Arm') * diag
stepplot(T2s,'g--',T3s,'m',4,opt)
legend('Initial 2-DOF','Refined 2-DOF','location','SouthEast')

Push the retuned values to Simulink for further validation.

writeBlockValue(ST3)

The simulation results appear in Figure 6. The Bicep response is now on par
with the other joints in terms of settling time and smooth transient.

Figure 6: Angular response with refined controller.
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Active Vibration Control in Three-Story Building
This example uses systune to control seismic vibrations in a three-story
building.

Background

This example considers an Active Mass Driver (AMD) control system for
vibration isolation in a three-story experimental structure. This setup is used
to assess control design techniques for increasing safety of civil engineering
structures during earthquakes. The structure consists of three stories with
an active mass driver on the top floor which is used to attenuate ground
disturbances. This application is borrowed from "Benchmark Problems in
Structural Control: Part I - Active Mass Driver System," B.F. Spencer Jr., S.J.
Dyke, and H.S. Deoskar, Earthquake Engineering and Structural Dynamics,
27(11), 1998, pp. 1127-1139.

Figure 1: Active Mass Driver Control System

The plant P is a 28-state model with the following state variables:

• x(i): displacement of i-th floor relative to the ground (cm)

• xm: displacement of AMD relative to 3rd floor (cm)

• xv(i): velocity of i-th floor relative to the ground (cm/s)

• xvm: velocity of AMD relative to the ground (cm/s)

• xa(i): acceleration of i-th floor relative to the ground (g)

• xam: acceleration of AMD relative to the ground (g)

• d(1)=x(1), d(2)=x(2)-x(1), d(3)=x(3)-x(2): inter-story drifts

The inputs are the ground acceleration xag (in g) and the control signal u. We
use 1 g = 981 cm/s^2.

load ThreeStoryData
size(P)
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State-space model with 20 outputs, 2 inputs, and 28 states.

Model of Earthquake Acceleration

The earthquake acceleration is modeled as a white noise process filtered
through a Kanai-Tajimi filter.

zg = 0.3; wg = 37.3;
S0 = 0.03*zg/(pi*wg*(4*zg^2+1));
num = sqrt(S0)*[2*zg*wg wg^2];
den = [1 2*zg*wg wg^2];

F = sqrt(2*pi)*tf(num,den);
F.InputName = 'n'; % white noise input

bodemag(F), grid, title('Kanai-Tajimi filter')

Open-Loop Characteristics

The effect of an earthquake on the uncontrolled structure can be simulated
by injecting a white noise input n into the plant-filter combination. You can
also use covar to directly compute the standard deviations of the resulting
inter-story drifts and accelerations.

% Add Kanai-Tajimi filter to the plant
PF = P*append(F , 1);

% Standard deviations of open-loop drifts
CV = covar(PF('d','n'),1);
d0 = sqrt(diag(CV));

% Standard deviations of open-loop acceleration
CV = covar(PF('xa','n'),1);
xa0 = sqrt(diag(CV));

% Plot open-loop RMS values
clf, bar([d0 ; xa0])
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title('Drifts and accelerations for uncontrolled structure')
ylabel('Standard deviations')
set(gca,'XTickLabel',{'d(1)','d(2)','d(3)','xa(1)','xa(2)','xa(3)'})

Control Structure and Design Requirements

The control structure is depicted in Figure 2.

Figure 2: Control Structure

The controller uses measurements yxa and yxam of xa and xam to generate
the control signal u. Physically, the control u is an electrical current driving
an hydraulic actuator that moves the masses of the AMD. The design
requirements involve:

• Minimization of the inter-story drifts d(i) and accelerations xa(i)

• Hard constraints on control effort in terms of mass displacement xm, mass
acceleration xam, and control effort u

All design requirements are assessed in terms of standard deviations of
the corresponding signals. Use TuningGoal.Variance to express these
requirements and scale each variable by its open-loop standard deviation to
seek uniform relative improvement in all variables.

% Soft requirements on drifts and accelerations
Soft = [...

TuningGoal.Variance('n','d(1)', d0(1)) ; ...
TuningGoal.Variance('n','d(2)', d0(2)) ; ...
TuningGoal.Variance('n','d(3)', d0(3)) ; ...
TuningGoal.Variance('n','xa(1)', xa0(1)) ; ...
TuningGoal.Variance('n','xa(2)', xa0(2)) ; ...
TuningGoal.Variance('n','xa(3)', xa0(3))];

% Hard requirements on control effort
Hard = [...
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TuningGoal.Variance('n','xm', 3) ; ...
TuningGoal.Variance('n','xam', 2) ; ...
TuningGoal.Variance('n','u', 1)];

Controller Tuning

systune lets you tune virtually any controller structure subject to these
requirements. The controller complexity can be adjusted by trial-and-error,
starting with sufficiently high order to gauge the limits of performance, then
reducing the order until you observe a noticeable performance degradation.
For this example, start with a 5th-order controller with no feedthrough term.

C = ltiblock.ss('C',5,1,4);
C.d.Value = 0;
C.d.Free = false; % Fix feedthrough to zero

Construct a tunable model T0 of the closed-loop system of Figure 2 and tune
the controller parameters with systune.

% Build tunable closed-loop model
T0 = lft(PF,C);

% Tune controller parameters
[T,fSoft,gHard] = systune(T0,Soft,Hard);

Final: Soft = 0.601, Hard = 0.98225, Iterations = 157

The summary indicates that we achieved an overall reduction of 40% in
standard deviations (Soft = 0.6) while meeting all hard constraints (Hard
< 1).

Validation

Compute the standard deviations of the drifts and accelerations for the
controlled structure and compare with the uncontrolled results. The AMD
control system yields significant reduction of both drift and acceleration.

% Standard deviations of closed-loop drifts
CV = covar(T('d','n'),1);
d = sqrt(diag(CV));
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% Standard deviations of closed-loop acceleration
CV = covar(T('xa','n'),1);
xa = sqrt(diag(CV));

% Compare open- and closed-loop values
clf, bar([d0 d; xa0 xa])
title('Drifts and accelerations')
ylabel('Standard deviations')
set(gca,'XTickLabel',{'d(1)','d(2)','d(3)','xa(1)','xa(2)','xa(3)'})
legend('Uncontrolled','Controlled','location','NorthWest')

Simulate the response of the 3-story structure to an earthquake-like excitation
in both open and closed loop. The earthquake acceleration is modeled as a
white noise process colored by the Kanai-Tajimi filter.

% Sampled white noise process
rng('default')
dt = 1e-3;
t = 0:dt:500;
n = randn(1,length(t))/sqrt(dt); % white noise signal

% Open-loop simulation
ysimOL = lsim(PF(:,1), n , t);

% Closed-loop simulation
ysimCL = lsim(T, n , t);

% Drifts
clf, subplot(311); plot(t,ysimOL(:,13),'b',t,ysimCL(:,13),'r'); grid;
title('Inter-story drift d(1) (blue=open loop, red=closed loop)'); ylabel(
subplot(312); plot(t,ysimOL(:,14),'b',t,ysimCL(:,14),'r'); grid;
title('Inter-story drift d(2)'); ylabel('cm');
subplot(313); plot(t,ysimOL(:,15),'b',t,ysimCL(:,15),'r'); grid;
title('Inter-story drift d(3)'); ylabel('cm');

% Accelerations
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clf, subplot(311); plot(t,ysimOL(:,9),'b',t,ysimCL(:,9),'r'); grid;
title('Acceleration of 1st floor xa(1) (blue=open loop, red=closed loop)');
subplot(312); plot(t,ysimOL(:,10),'b',t,ysimCL(:,10),'r'); grid;
title('Acceleration of 2nd floor xa(2)'); ylabel('g');
subplot(313); plot(t,ysimOL(:,11),'b',t,ysimCL(:,11),'r'); grid;
title('Acceleration of 3rd floor xa(3)'); ylabel('g');

% Control variables
clf, subplot(311); plot(t,ysimCL(:,4),'r'); grid;
title('AMD position xm'); ylabel('cm');
subplot(312); plot(t,ysimCL(:,12),'r'); grid;
title('AMD acceleration xam'); ylabel('g');
subplot(313); plot(t,ysimCL(:,16),'r'); grid;
title('Control signal u');

Plot the root-mean-square (RMS) of the simulated signals for both the
controlled and uncontrolled scenarios. Assuming ergodicity, the RMS
performance can be estimated from a single sufficiently long simulation of the
process and coincides with the standard deviations computed earlier. Indeed
the RMS plot closely matches the standard deviation plot obtained earlier.

clf, bar([std(ysimOL(:,13:15)) std(ysimOL(:,9:11)) ; ...
std(ysimCL(:,13:15)) std(ysimCL(:,9:11))]')

title('Drifts and accelerations')
ylabel('Simulated RMS values')
set(gca,'XTickLabel',{'d(1)','d(2)','d(3)','xa(1)','xa(2)','xa(3)'})
legend('Uncontrolled','Controlled','location','NorthWest')

Overall, the controller achieves significant reduction of ground vibration
both in terms of drift and acceleration for all stories while meeting the hard
constraints on control effort and mass displacement.
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Tuning of a Two-Loop Autopilot
This example shows how to use Robust Control Toolbox™ to tune a two-loop
autopilot controlling the pitch rate and vertical acceleration of an airframe.

Model of Airframe Autopilot

The airframe dynamics and the autopilot are modeled in Simulink.

open_system('rct_airframe1')

The autopilot consists of two cascaded loops. The inner loop controls the pitch
rate q, and the outer loop controls the vertical acceleration az in response to
the pilot stick command azref. In this architecture, the tunable elements
include the PI controller gains ("az Control" block) and the pitch-rate gain ("q
Gain" block). The autopilot must be tuned to respond to a step command
azref in about 1 second with minimal overshoot. In this example, we tune
the autopilot gains for one flight condition corresponding to zero incidence
and a speed of 984 m/s.

To analyze the airframe dynamics, trim the airframe for and . The trim
condition corresponds to zero normal acceleration and pitching moment ( and
steady). Use findop to compute the corresponding closed-loop operating
condition. Note that we added a "delta trim" input port so that findop can
adjust the fin deflection to produce the desired equilibrium of forces and
moments.

opspec = operspec('rct_airframe1');

% Specify trim condition
% Xe,Ze: known, not steady
opspec.States(1).Known = [1;1];
opspec.States(1).SteadyState = [0;0];
% u,w: known, w steady
opspec.States(3).Known = [1 1];
opspec.States(3).SteadyState = [0 1];
% theta: known, not steady
opspec.States(2).Known = 1;
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opspec.States(2).SteadyState = 0;
% q: unknown, steady
opspec.States(4).Known = 0;
opspec.States(4).SteadyState = 1;
% integrator states unknown, not steady
opspec.States(5).SteadyState = 0;
opspec.States(6).SteadyState = 0;

op = findop('rct_airframe1',opspec);

Operating Point Search Report:
---------------------------------

Operating Report for the Model rct_airframe1.
(Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:
----------
(1.) rct_airframe1/Airframe Model/Aerodynamics & Equations of Motion/ Equat

x: 0 dx: 984
x: -3.05e+03 dx: 0

(2.) rct_airframe1/Airframe Model/Aerodynamics & Equations of Motion/ Equat
x: 0 dx: -0.00972

(3.) rct_airframe1/Airframe Model/Aerodynamics & Equations of Motion/ Equat
x: 984 dx: 22.7
x: 0 dx: -1.44e-11 (0)

(4.) rct_airframe1/Airframe Model/Aerodynamics & Equations of Motion/ Equat
x: -0.00972 dx: 1.72e-16 (0)

(5.) rct_airframe1/Integrator
x: 0.000708 dx: -0.00972

(6.) rct_airframe1/az Control/Integrator
x: 0 dx: 0.000242

Inputs:
----------
(1.) rct_airframe1/delta trim

u: 0.000708 [-Inf Inf]
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Outputs: None
----------

Linearize the "Airframe Model" block for the computed trim condition op and
plot the gains from the fin deflection delta to az and q:

G = linearize('rct_airframe1','rct_airframe1/Airframe Model',op);
G.InputName = 'delta';
G.OutputName = {'az','q'};

bodemag(G), grid

Note that the airframe model has an unstable pole:

pole(G)

ans =

-0.0320
-0.0255
0.1253

-29.4685

Frequency-Domain Tuning with LOOPTUNE

You can use the looptune function to automatically tune multi-loop control
systems subject to basic requirements such as integral action, adequate
stability margins, and desired bandwidth. To apply looptune to the autopilot
model, create an instance of the slTuner interface and designate the Simulink
blocks "az Control" and "q Gain" as tunable. Also specify the trim condition op
to correctly linearize the airframe dynamics.

ST0 = slTuner('rct_airframe1',{'az Control','q Gain'},op);
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Mark the reference, control, and measurement signals as points of interest for
analysis and tuning.

addPoint(ST0,{'az ref','delta fin','az','q'});

Finally, tune the control system parameters to meet the 1 second response
time requirement. In the frequency domain, this roughly corresponds to a
gain crossover frequency wc = 5 rad/s for the open-loop response at the plant
input "delta fin".

wc = 5;
Controls = 'delta fin';
Measurements = {'az','q'};
[ST,gam,Info] = looptune(ST0,Controls,Measurements,wc);

Final: Peak gain = 1.01, Iterations = 52

The requirements are normalized so a final value near 1 means that all
requirements are met. Confirm this by graphically validating the design.

loopview(ST,Info)

The first plot confirms that the open-loop response has integral action and
the desired gain crossover frequency while the second plot shows that the
MIMO stability margins are satisfactory (the blue curve should remain below
the yellow bound). Next check the response from the step command azref to
the vertical acceleration az:

T = getIOTransfer(ST,'az ref','az');
clf, step(T,5)

The acceleration az does not track azref despite the presence of an integrator
in the loop. This is because the feedback loop acts on the two variables az and
q and we have not specified which one should track azref.

Adding a Tracking Requirement
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To remedy this issue, add an explicit requirement that az should follow
the step command azref with a 1 second response time. Also relax the
gain crossover requirement to the interval [3,12] to let the tuner find the
appropriate gain crossover frequency.

TrackReq = TuningGoal.Tracking('az ref','az',1);
ST = looptune(ST0,Controls,Measurements,[3,12],TrackReq);

Final: Peak gain = 1.23, Iterations = 46

The step response from azref to az is now satisfactory:

Tr1 = getIOTransfer(ST,'az ref','az');
step(Tr1,5), grid

Also check the disturbance rejection characteristics by looking at the
responses from a disturbance entering at the plant input

Td1 = getIOTransfer(ST,'delta fin','az');
bodemag(Td1), grid

step(Td1,5), grid, title('Disturbance rejection')

Use showBlockValue to see the tuned values of the PI controller and
inner-loop gain

showBlockValue(ST)

AnalysisPoints_ =

d =
u1 u2 u3 u4

y1 1 0 0 0
y2 0 1 0 0
y3 0 0 1 0
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y4 0 0 0 1

Name: AnalysisPoints_
Static gain.
-----------------------------------
az_Control =

1
Kp + Ki * ---

s

with Kp = 0.00166, Ki = 0.0017

Name: az_Control
Continuous-time PI controller in parallel form.
-----------------------------------
q_Gain =

d =
u1

y1 1.987

Name: q_Gain
Static gain.

If this design is satisfactory, use writeBlockValue to apply the tuned values
to the Simulink model and simulate the tuned controller in Simulink.

writeBlockValue(ST)

MIMO Design with SYSTUNE

Cascaded loops are commonly used for autopilots. Yet one may wonder how
a single MIMO controller that uses both az and q to generate the actuator
command delta fin would compare with the two-loop architecture. Trying
new control architectures is easy with systune or looptune. For variety, we
now use systune to tune the following MIMO architecture.

open_system('rct_airframe2')
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As before, compute the trim condition for and .

opspec = operspec('rct_airframe2');

% Specify trim condition
% Xe,Ze: known, not steady
opspec.States(1).Known = [1;1];
opspec.States(1).SteadyState = [0;0];
% u,w: known, w steady
opspec.States(3).Known = [1 1];
opspec.States(3).SteadyState = [0 1];
% theta: known, not steady
opspec.States(2).Known = 1;
opspec.States(2).SteadyState = 0;
% q: unknown, steady
opspec.States(4).Known = 0;
opspec.States(4).SteadyState = 1;
% controller states unknown, not steady
opspec.States(5).SteadyState = [0;0];

op = findop('rct_airframe2',opspec);

Operating Point Search Report:
---------------------------------

Operating Report for the Model rct_airframe2.
(Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:
----------
(1.) rct_airframe2/Airframe Model/Aerodynamics & Equations of Motion/ Equat

x: 0 dx: 984
x: -3.05e+03 dx: 0

(2.) rct_airframe2/Airframe Model/Aerodynamics & Equations of Motion/ Equat
x: 0 dx: -0.00972

(3.) rct_airframe2/Airframe Model/Aerodynamics & Equations of Motion/ Equat
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x: 984 dx: 22.7
x: 0 dx: 2.46e-11 (0)

(4.) rct_airframe2/Airframe Model/Aerodynamics & Equations of Motion/ Equat
x: -0.00972 dx: -4.02e-16 (0)

(5.) rct_airframe2/MIMO Controller
x: 0.000654 dx: -0.009
x: 1.06e-18 dx: 0.0303

Inputs:
----------
(1.) rct_airframe2/delta trim

u: 0.000436 [-Inf Inf]

Outputs: None
----------

As with looptune, use the slTuner interface to configure the Simulink model
for tuning. Note that the signals of interest are already marked as Linear
Analysis points in the Simulink model.

ST0 = slTuner('rct_airframe2','MIMO Controller',op);

Try a second-order MIMO controller with zero feedthrough from e to delta
fin. To do this, create the desired controller parameterization and associate
it with the "MIMO Controller" block using setBlockParam:

C0 = ltiblock.ss('C',2,1,2); % Second-order controller
C0.d.Value(1) = 0; C0.d.Free(1) = false; % Fix D(1) to zero
setBlockParam(ST0,'MIMO Controller',C0)

Next create the tuning requirements. Here we use the following four
requirements:

1 Tracking: az should respond in about 1 second to the azref command

2 Bandwidth and roll-off: The loop gain at delta fin should roll off after
25 rad/s with a -20 dB/decade slope

3 Stability margins: The margins at delta fin should exceed 7 dB and 45
degrees
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4 Disturbance rejection: The attenuation factor for input disturbances
should be 40 dB at 1 rad/s increasing to 100 dB at 0.001 rad/s.

% Tracking
Req1 = TuningGoal.Tracking('az ref','az',1);

% Bandwidth and roll-off
Req2 = TuningGoal.MaxLoopGain('delta fin',tf(25,[1 0]));

% Margins
Req3 = TuningGoal.Margins('delta fin',7,45);

% Disturbance rejection
% Use an FRD model to sketch the desired attenuation profile with a few poi
Freqs = [0 0.001 1];
MinAtt = [100 100 40]; % in dB
Req4 = TuningGoal.Rejection('delta fin',frd(db2mag(MinAtt),Freqs));
Req4.Focus = [0 1];

You can now use systune to tune the controller parameters subject to these
requirements.

AllReqs = [Req1,Req2,Req3 Req4];
Opt = systuneOptions('RandomStart',3);

rng(0)
[ST,fSoft,~,Info] = systune(ST0,AllReqs,Opt);

Final: Soft = 1.42, Hard = -Inf, Iterations = 40
Final: Soft = 1.14, Hard = -Inf, Iterations = 99
Final: Soft = 1.14, Hard = -Inf, Iterations = 52
Final: Soft = 1.14, Hard = -Inf, Iterations = 123

The best design has an overall objective value close to 1, indicating that all
four requirements are nearly met. Use viewSpec to inspect each requirement
for the best design.

viewSpec(AllReqs,ST,Info)
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Compute the closed-loop responses and compare with the two-loop design.

T = getIOTransfer(ST,{'az ref','delta fin'},'az');

clf
step(Tr1,'b',T(1),'r',5)
title('Tracking'), legend('Cascade','2 dof')

step(Td1,'b',T(2),'r',5)
title('Disturbance rejection'), legend('Cascade','2 dof')

The tracking performance is similar but the second design has better
disturbance rejection properties.
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Multi-Loop Control of a Helicopter
This example shows how to use Robust Control Toolbox™ to tune a multi-loop
controller for a rotorcraft.

Helicopter Model

This example uses an 8-state helicopter model at the hovering trim condition.
The state vector x = [u,w,q,theta,v,p,phi,r] consists of

• Longitudinal velocity u (m/s)

• Lateral velocity v (m/s)

• Normal velocity w (m/s)

• Pitch angle theta (deg)

• Roll angle phi (deg)

• Roll rate p (deg/s)

• Pitch rate q (deg/s)

• Yaw rate r (deg/s).

The controller generates commands ds,dc,dT in degrees for the longitudinal
cyclic, lateral cyclic, and tail rotor collective using measurements of theta,
phi, p, q, and r.

Control Architecture

The following Simulink model depicts the control architecture:

open_system('rct_helico')

The control system consists of two feedback loops. The inner loop (static
output feedback) provides stability augmentation and decoupling. The outer
loop (PI controllers) provides the desired setpoint tracking performance. The
main control objectives are as follows:
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• Track setpoint changes in theta, phi, and r with zero steady-state
error, rise times of about 2 seconds, minimal overshoot, and minimal
cross-coupling

• Limit the control bandwidth to guard against neglected high-frequency
rotor dynamics and measurement noise

• Provide strong multivariable gain and phase margins (robustness to
simultaneous gain/phase variations at the plant inputs and outputs, see
loopmargin for details).

We use lowpass filters with cutoff at 40 rad/s to partially enforce the second
objective.

Controller Tuning

You can jointly tune the inner and outer loops with the systune command.
This command only requires models of the plant and controller along with
the desired bandwidth (which is function of the desired response time). When
the control system is modeled in Simulink, you can use the slTuner interface
to quickly set up the tuning task. Create an instance of this interface with
the list of blocks to be tuned.

ST0 = slTuner('rct_helico',{'PI1','PI2','PI3','SOF'});

Each tunable block is automatically parameterized according to its type and
initialized with its value in the Simulink model ( for the PI controllers and
zero for the static output-feedback gain). Simulating the model shows that
the control system is unstable for these initial values:

Mark the I/O signals of interest for setpoint tracking, and identify the plant
inputs and outputs (control and measurement signals) where the stability
margin are measured.

addPoint(ST0,{'theta-ref','phi-ref','r-ref'}) % setpoint commands
addPoint(ST0,{'theta','phi','r'}) % corresponding outputs
addPoint(ST0,{'u','y'});
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Finally, capture the design requirements using TuningGoal objects. We use
the following requirements for this example:

• Tracking requirement: The response of theta, phi, r to step commands
theta_ref, phi_ref, r_ref must resemble a decoupled first-order response
with a one-second time constant

• Stability margins: The multivariable gain and phase margins at the
plant inputs u and plant outputs y must be at least 5 dB and 40 degrees

• Fast dynamics: The magnitude of the closed-loop poles must not exceed
25 to prevent fast dynamics and jerky transients

% Less than 20% mismatch with reference model 1/(s+1)
TrackReq = TuningGoal.StepResp({'theta-ref','phi-ref','r-ref'},{'theta','ph
TrackReq.RelGap = 0.2;

% Gain and phase margins at plant inputs and outputs
MarginReq1 = TuningGoal.Margins('u',5,40);
MarginReq2 = TuningGoal.Margins('y',5,40);

% Limit on fast dynamics
PoleReq = TuningGoal.Poles();
PoleReq.MaxFrequency = 25;

You can now use systune to jointly tune all controller parameters. This
returns the tuned version ST1 of the control system ST0.

AllReqs = [TrackReq,MarginReq1,MarginReq2,PoleReq];
[ST1,fSoft,~,Info] = systune(ST0,AllReqs);

Final: Soft = 1.13, Hard = -Inf, Iterations = 68

The final value is close to 1 so the requirements are nearly met. Plot the
tuned responses to step commands in theta, phi, r:

T1 = getIOTransfer(ST1,{'theta-ref','phi-ref','r-ref'},{'theta','phi','r'})
step(T1,5)
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The rise time is about two seconds with no overshoot and little cross-coupling.
You can use viewSpec for a more thorough validation of each requirement,
including a visual assessment of the multivariable stability margins (see
loopmargin for details):

viewSpec(AllReqs,ST1,Info)

Inspect the tuned values of the PI controllers and static output-feedback gain.

showTunable(ST1)

Block 1: rct_helico/PI1 =

1
Kp + Ki * ---

s

with Kp = 0.733, Ki = 1.6

Name: PI1
Continuous-time PI controller in parallel form.

-----------------------------------

Block 2: rct_helico/PI2 =

1
Kp + Ki * ---

s

with Kp = -0.0702, Ki = -1.54

Name: PI2
Continuous-time PI controller in parallel form.

-----------------------------------
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Block 3: rct_helico/PI3 =

1
Kp + Ki * ---

s

with Kp = 0.14, Ki = -2.59

Name: PI3
Continuous-time PI controller in parallel form.

-----------------------------------

Block 4: rct_helico/SOF =

d =
u1 u2 u3 u4 u5

y1 1.66 -0.1231 0.0936 0.6095 -0.0003637
y2 -0.2908 -1.429 0.0292 -0.07929 -0.1097
y3 -0.003642 0.01314 -2.262 -0.012 0.03153

Name: SOF
Static gain.

Benefit of the Inner Loop

You may wonder whether the static output feedback is necessary and whether
PID controllers aren’t enough to control the helicopter. This question is easily
answered by re-tuning the controller with the inner loop open. First break the
inner loop by adding a loop opening after the SOF block:

addOpening(ST0,'SOF')

Then remove the SOF block from the tunable block list and re-parameterize
the PI blocks as full-blown PIDs with the correct loop signs (as inferred from
the first design).

PID = pid(0,0.001,0.001,.01); % initial guess for PID controllers
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ST0.removeBlock('SOF');
setBlockParam(ST0,'PI1',ltiblock.pid('C1',PID));
setBlockParam(ST0,'PI2',ltiblock.pid('C2',-PID));
setBlockParam(ST0,'PI3',ltiblock.pid('C3',-PID));

Re-tune the three PID controllers and plot the closed-loop step responses.

[ST2,fSoft,~,Info] = systune(ST0,AllReqs);

Final: Soft = 4.96, Hard = -Inf, Iterations = 64

T2 = getIOTransfer(ST2,{'theta-ref','phi-ref','r-ref'},{'theta','phi','r'})
clf, step(T2,5)

The final value is no longer close to 1 and the step responses confirm the
poorer performance with regard to rise time, overshoot, and decoupling. This
suggests that the inner loop has an important stabilizing effect that should
be preserved.
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Fixed-Structure Autopilot for a Passenger Jet
This example shows how to use Robust Control Toolbox™ to tune the standard
configuration of a longitudinal autopilot. We thank Professor D. Alazard
from Institut Superieur de l’Aeronautique et de l’Espace for providing the
aircraft model and Professor Pierre Apkarian from ONERA for developing
the example.

Aircraft Model and Autopilot Configuration

The longitudinal autopilot for a supersonic passenger jet flying at Mach
0.7 and 5000 ft is depicted in Figure 1. The autopilot main purpose is to
follow vertical acceleration commands issued by the pilot. The feedback
structure consists of an inner loop controlling the pitch rate and an outer
loop controlling the vertical acceleration . The autopilot also includes a
feedforward component and a reference model that specifies the desired
response to a step command . Finally, the second-order roll-off filter

is used to attenuate noise and limit the control bandwidth as a safeguard
against unmodeled dynamics. The tunable components are highlighted in
orange.

Figure 1: Longitudinal Autopilot Configuration.

The aircraft model is a 5-state model, the state variables being the
aerodynamic speed (m/s), the climb angle (rad), the angle of attack (rad),
the pitch rate (rad/s), and the altitude (m). The elevator deflection (rad) is
used to control the vertical load factor . The open-loop dynamics include the
oscillation with frequency and damping ratio = 1.7 (rad/s) and = 0.33, the
phugoid mode = 0.64 (rad/s) and = 0.06, and the slow altitude mode = -0.0026.

load ConcordeData G
bode(G,{1e-3,1e2}), grid
title('Aircraft Model')
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Note the zero at the origin in . Because of this zero, we cannot achieve
zero steady-state error and must instead focus on the transient response to
acceleration commands. Note that acceleration commands are transient in
nature so steady-state behavior is not a concern. This zero at the origin also
precludes pure integral action so we use a pseudo-integrator with = 0.001.

Tuning Setup

When the control system is modeled in Simulink, you can use the slTuner
interface to quickly set up the tuning task. Open the Simulink model of the
autopilot.

open_system('rct_concorde')

Configure the slTuner interface by listing the tuned blocks in the Simulink
model (highlighted in orange). This automatically picks all Linear Analysis
points in the model as points of interest for analysis and tuning.

ST0 = slTuner('rct_concorde',{'Ki','Kp','Kq','Kf','RollOff'});

This also parameterizes each tuned block and initializes the block parameters
based on their values in the Simulink model. Note that the four gains
Ki,Kp,Kq,Kf are initialized to zero in this example. By default the roll-off
filter is parameterized as a generic second-order transfer function. To
parameterize it as

create real parameters , build the transfer function shown above, and
associate it with the RollOff block.

wn = realp('wn', 3); % natural frequency
zeta = realp('zeta',0.8); % damping
Fro = tf(wn^2,[1 2*zeta*wn wn^2]); % parametric transfer function

setBlockParam(ST0,'RollOff',Fro) % use Fro to parameterize "RollOff" bloc

7-94



Fixed-Structure Autopilot for a Passenger Jet

Design Requirements

The autopilot must be tuned to satisfy three main design requirements:

1. Setpoint tracking: The response to the command should closely match
the response of the reference model:

This reference model specifies a well-damped response with a 2 second
settling time.

2. High-frequency roll-off: The closed-loop response from the noise signals
to should roll off past 8 rad/s with a slope of at least -40 dB/decade.

3. Stability margins: The stability margins at the plant input should be at
least 7 dB and 45 degrees.

For setpoint tracking, we require that the gain of the closed-loop transfer from
the command to the tracking error be small in the frequency band [0.05,5]
rad/s (recall that we cannot drive the steady-state error to zero because of
the plant zero at s=0). Using a few frequency points, sketch the maximum
tracking error as a function of frequency and use it to limit the gain from to .

Freqs = [0.005 0.05 5 50];
Gains = [5 0.05 0.05 5];
Req1 = TuningGoal.Gain('Nzc','e',frd(Gains,Freqs));
Req1.Name = 'Maximum tracking error';

The TuningGoal.Gain constructor automatically turns the maximum error
sketch into a smooth weighting function. Use viewSpec to graphically verify
the desired error profile.

viewSpec(Req1)

Repeat the same process to limit the high-frequency gain from the noise inputs
to and enforce a -40 dB/decade slope in the frequency band from 8 to 800 rad/s

Freqs = [0.8 8 800];
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Gains = [10 1 1e-4];
Req2 = TuningGoal.Gain('n','delta_m',frd(Gains,Freqs));
Req2.Name = 'Roll-off requirement';

viewSpec(Req2)

Finally, register the plant input as a site for open-loop analysis and use
TuningGoal.Margins to capture the stability margin requirement.

addPoint(ST0,'delta_m')

Req3 = TuningGoal.Margins('delta_m',7,45);

Autopilot Tuning

We are now ready to tune the autopilot parameters with systune. This
command takes the untuned configuration ST0 and the three design
requirements and returns the tuned version ST of ST0. All requirements are
satisfied when the final value is less than one.

[ST,fSoft,~,Info] = systune(ST0,[Req1 Req2 Req3]);

Final: Soft = 0.965, Hard = -Inf, Iterations = 58

Use showTunable to see the tuned block values.

showTunable(ST)

Block 1: rct_concorde/Ki =

d =
u1

y1 -0.03004

Name: Ki
Static gain.
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-----------------------------------

Block 2: rct_concorde/Kp =

d =
u1

y1 -0.009627

Name: Kp
Static gain.

-----------------------------------

Block 3: rct_concorde/Kq =

d =
u1

y1 -0.2871

Name: Kq
Static gain.

-----------------------------------

Block 4: rct_concorde/Kf =

d =
u1

y1 -0.0228

Name: Kf
Static gain.

-----------------------------------

wn = 4.82
-----------------------------------
zeta = 0.514
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To get the tuned value of , use getBlockValue to evaluate Fro for the tuned
parameter values in ST:

Fro = getBlockValue(ST,'RollOff');
tf(Fro)

ans =

23.22
---------------------
s^2 + 4.955 s + 23.22

Continuous-time transfer function.

Finally, use viewSpec to graphically verify that all requirements are satisfied.

viewSpec([Req1 Req2 Req3],ST)

Closed-Loop Simulations

We now verify that the tuned autopilot satisfies the design requirements.
First compare the step response of with the step response of the reference
model . Again use getIOTransfer to compute the tuned closed-loop transfer
from Nzc to Nz:

Gref = tf(1.7^2,[1 2*0.7*1.7 1.7^2]); % reference model

T = getIOTransfer(ST,'Nzc','Nz'); % transfer Nzc -> Nz

clf, step(T,'b',Gref,'b--',6), grid,
ylabel('N_z'), legend('Actual response','Reference model')

Also plot the deflection and the respective contributions of the feedforward
and feedback paths:
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T = getIOTransfer(ST,'Nzc','delta_m'); % transfer Nzc -> delta_m
Kf = getBlockValue(ST,'Kf'); % tuned value of Kf
Tff = Fro*Kf; % feedforward contribution to delta_m

step(T,'b',Tff,'g--',T-Tff,'r-.',6), grid
ylabel('\delta_m'), legend('Total','Feedforward','Feedback')

Finally, check the roll-off and stability margin requirements by computing
the open-loop response at .

OL = getLoopTransfer(ST,'delta_m',-1); % negative-feedback loop transfer
margin(OL); grid; set(gca,'XLim',[1e-3,1e2])

The Bode plot confirms a roll-off of -40 dB/decade past 8 rad/s and indicates
gain and phase margins in excess of 10 dB and 70 degrees.
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Fault-Tolerant Control of a Passenger Jet
This example shows how to tune a fixed-structure controller for multiple
operating modes of the plant.

Background

This example deals with fault-tolerant flight control of passenger jet
undergoing outages in the elevator and aileron actuators. The flight
control system must maintain stability and meet performance and comfort
requirements in both nominal operation and degraded conditions where some
actuators are no longer effective due to control surface impairment. Wind
gusts must be alleviated in all conditions. This application is sometimes
called reliable control as aircraft safety must be maintained in extreme flight
conditions.

Aircraft Model

The control system is modeled in Simulink.

open_system('faultTolerantAircraft')

The aircraft is modeled as a rigid 6th-order state-space system with the
following state variables (units are mph for velocities and deg/s for angular
rates):

• u: x-body axis velocity

• w: z-body axis velocity

• q: pitch rate

• v: y-body axis velocity

• p: roll rate

• r: yaw rate

The state vector is available for control as well as the flight-path bank angle
rate mu (deg/s), the angle of attack alpha (deg), and the sideslip angle beta
(deg). The control inputs are the deflections of the right elevator, left elevator,
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right aileron, left aileron, and rudder. All deflections are in degrees. Elevators
are grouped symmetrically to generate the angle of attack. Ailerons are
grouped anti-symmetrically to generate roll motion. This leads to 3 control
actions as shown in the Simulink model.

The controller consists of state-feedback control in the inner loop and MIMO
integral action in the outer loop. The gain matrices Ki and Kx are 3-by-3 and
3-by-6, respectively, so the controller has 27 tunable parameters.

Actuator Failures

We use a 9x5 matrix to encode the nominal mode and various actuator failure
modes. Each row corresponds to one flight condition, a zero indicating outage
of the corresponding deflection surface.

OutageCases = [...
1 1 1 1 1; ... % nominal operational mode
0 1 1 1 1; ... % right elevator outage
1 0 1 1 1; ... % left elevator outage
1 1 0 1 1; ... % right aileron outage
1 1 1 0 1; ... % left aileron outage
1 0 0 1 1; ... % left elevator and right aileron outage
0 1 0 1 1; ... % right elevator and right aileron outage
0 1 1 0 1; ... % right elevator and left aileron outage
1 0 1 0 1; ... % left elevator and left aileron outage
];

Design Requirements

The controller should:

1 Provide good tracking performance in mu, alpha, and beta in nominal
operating mode with adequate decoupling of the three axes

2 Maintain performance in the presence of wind gust of 10 mph

3 Limit stability and performance degradation in the face of actuator outage.

To express the first requirement, you can use an LQG-like cost function that
penalizes the integrated tracking error e and the control effort u:
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The diagonal weights and are the main tuning knobs for trading
responsiveness and control effort and emphasizing some channels over others.
Use the WeightedVariance requirement to express this cost function, and
relax the performance weight by a factor 2 for the outage scenarios.

We = diag([10 20 15]); Wu = eye(3);

% Nominal tracking requirement
SoftNom = TuningGoal.WeightedVariance('setpoint',{'e','u'}, blkdiag(We,Wu),
SoftNom.Models = 1; % nominal model

% Tracking requirement for outage conditions
SoftOut = TuningGoal.WeightedVariance('setpoint',{'e','u'}, blkdiag(We/2,Wu
SoftOut.Models = 2:9; % outage scenarios

For wind gust alleviation, limit the variance of the error signal e due to
the white noise wg driving the wind gust model. Again use a less stringent
requirement for the outage scenarios.

% Nominal gust alleviation requirement
HardNom = TuningGoal.Variance('wg','e',0.02);
HardNom.Models = 1;

% Gust alleviation requirement for outage conditions
HardOut = TuningGoal.Variance('wg','e',0.1);
HardOut.Models = 2:9;

Controller Tuning for Nominal Flight

Set the wind gust speed to 10 mph and initialize the tunable state-feedback
and integrators gains of the controller.

GustSpeed = 10;
Ki = eye(3);
Kx = zeros(3,6);

Use the slTuner interface to set up the tuning task. List the blocks to be
tuned and specify the nine flight conditions by varying the outage variable in
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the Simulink model. Because you can only vary scalar parameters in slTuner,
independently specify the values taken by each entry of the outage vector.

OutageData = struct(...
'Name',{'outage(1)','outage(2)','outage(3)','outage(4)','outage(5)'},...
'Value',mat2cell(OutageCases,9,[1 1 1 1 1]));

ST0 = slTuner('faultTolerantAircraft',{'Ki','Kx'},OutageData);

Use systune to tune the controller gains subject to the nominal requirements.
Treat the wind gust alleviation as a hard constraint.

[ST,fSoft,gHard] = systune(ST0,SoftNom,HardNom);

Final: Soft = 22.6, Hard = 0.99942, Iterations = 272

Retrieve the gain values and simulate the responses to step commands in mu,
alpha, beta for the nominal and degraded flight conditions. All simulations
include wind gust effects, and the red curve is the nominal response.

Ki = getBlockValue(ST, 'Ki'); Ki = Ki.d;
Kx = getBlockValue(ST, 'Kx'); Kx = Kx.d;

% Bank-angle setpoint simulation
plotResponses(OutageCases,1,0,0);

% Angle-of-attack setpoint simulation
plotResponses(OutageCases,0,1,0);

% Sideslip-angle setpoint simulation
plotResponses(OutageCases,0,0,1);

The nominal responses are good but the deterioration in performance is
unacceptable when faced with actuator outage.

Controller Tuning for Impaired Flight
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To improve reliability, retune the controller gains to meet the nominal
requirement for the nominal plant as well as the relaxed requirements for all
eight outage scenarios.

[ST,fSoft,gHard] = systune(ST0,[SoftNom;SoftOut],[HardNom;HardOut]);

Final: Soft = 26, Hard = 0.99996, Iterations = 515

The optimal performance (square root of LQG cost ) is only slightly worse
than for the nominal tuning (26 vs. 23). Retrieve the gain values and rerun
the simulations (red curve is the nominal response).

Ki = getBlockValue(ST, 'Ki'); Ki = Ki.d;
Kx = getBlockValue(ST, 'Kx'); Kx = Kx.d;

% Bank-angle setpoint simulation
plotResponses(OutageCases,1,0,0);

% Angle-of-attack setpoint simulation
plotResponses(OutageCases,0,1,0);

% Sideslip-angle setpoint simulation
plotResponses(OutageCases,0,0,1);

The controller now provides acceptable performance for all outage scenarios
considered in this example. The design could be further refined by adding
specifications such as minimum stability margins and gain limits to avoid
actuator rate saturation.
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Fixed-Structure H-infinity Synthesis with HINFSTRUCT
This example uses the hinfstruct command to tune a fixed-structure
controller subject to constraints.

Introduction

The hinfstruct command extends classical synthesis (see hinfsyn) to
fixed-structure control systems. This command is meant for users already
comfortable with the hinfsyn workflow. If you are unfamiliar with synthesis
or find augmented plants and weighting functions intimidating, use systune
and looptune instead. See "Tuning Control Systems with SYSTUNE" for the
systune counterpart of this example.

Plant Model

This example uses a 9th-order model of the head-disk assembly (HDA) in a
hard-disk drive. This model captures the first few flexible modes in the HDA.

load hinfstruct_demo G
bode(G), grid

We use the feedback loop shown below to position the head on the correct
track. This control structure consists of a PI controller and a low-pass filter
in the return path. The head position y should track a step change r with
a response time of about one millisecond, little or no overshoot, and no
steady-state error.

Figure 1: Control Structure

Tunable Elements

There are two tunable elements in the control structure of Figure 1: the PI
controller and the low-pass filter
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Use the ltiblock.pid class to parameterize the PI block and specify the filter
as a transfer function depending on a tunable real parameter .

C0 = ltiblock.pid('C','pi'); % tunable PI

a = realp('a',1); % filter coefficient
F0 = tf(a,[1 a]); % filter parameterized by a

Loop Shaping Design

Loop shaping is a frequency-domain technique for enforcing requirements on
response speed, control bandwidth, roll-off, and steady state error. The idea is
to specify a target gain profile or "loop shape" for the open-loop response . A
reasonable loop shape for this application should have integral action and a
crossover frequency of about 1000 rad/s (the reciprocal of the desired response
time of 0.001 seconds). This suggests the following loop shape:

wc = 1000; % target crossover
s = tf('s');
LS = (1+0.001*s/wc)/(0.001+s/wc);
bodemag(LS,{1e1,1e5}), grid, title('Target loop shape')

Note that we chose a bi-proper, bi-stable realization to avoid technical
difficulties with marginally stable poles and improper inverses. In order
to tune and with hinfstruct, we must turn this target loop shape into
constraints on the closed-loop gains. A systematic way to go about this is to
instrument the feedback loop as follows:

• Add a measurement noise signal n

• Use the target loop shape LS and its reciprocal to filter the error signal e
and the white noise source nw.

Figure 2: Closed-Loop Formulation
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If denotes the closed-loop transfer function from (r,nw) to (y,ew), the gain
constraint

secures the following desirable properties:

• At low frequency (w<wc), the open-loop gain stays above the gain specified
by the target loop shape LS

• At high frequency (w>wc), the open-loop gain stays below the gain specified
by LS

• The closed-loop system has adequate stability margins

• The closed-loop step response has small overshoot.

We can therefore focus on tuning and to enforce .

Specifying the Control Structure in MATLAB

In MATLAB, you can use the connect command to model by connecting the
fixed and tunable components according to the block diagram of Figure 2:

% Label the block I/Os
Wn = 1/LS; Wn.u = 'nw'; Wn.y = 'n';
We = LS; We.u = 'e'; We.y = 'ew';
C0.u = 'e'; C0.y = 'u';
F0.u = 'yn'; F0.y = 'yf';

% Specify summing junctions
Sum1 = sumblk('e = r - yf');
Sum2 = sumblk('yn = y + n');

% Connect the blocks together
T0 = connect(G,Wn,We,C0,F0,Sum1,Sum2,{'r','nw'},{'y','ew'});

These commands construct a generalized state-space model T0 of . This model
depends on the tunable blocks C and a:

T0.Blocks
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ans =

C: [1x1 ltiblock.pid]
a: [1x1 realp]

Note that T0 captures the following "Standard Form" of the block diagram
of Figure 2 where the tunable components are separated from the fixed
dynamics.

Figure 3: Standard Form for Disk-Drive Loop Shaping

Tuning the Controller Gains

We are now ready to use hinfstruct to tune the PI controller and filter for
the control architecture of Figure 1. To mitigate the risk of local minima,
run three optimizations, two of which are started from randomized initial
values for C0 and F0:

rng('default')
opt = hinfstructOptions('Display','final','RandomStart',5);
T = hinfstruct(T0,opt);

Final: Peak gain = 3.88, Iterations = 103
Final: Peak gain = 1.56, Iterations = 115
Final: Peak gain = 597, Iterations = 188

Some closed-loop poles are marginally stable (decay rate near 1e-07)
Final: Peak gain = 1.56, Iterations = 128
Final: Peak gain = 1.56, Iterations = 92
Final: Peak gain = 3.88, Iterations = 56

The best closed-loop gain is 1.56, so the constraint is nearly satisfied.
The hinfstruct command returns the tuned closed-loop transfer . Use
showTunable to see the tuned values of and the filter coefficient :

showTunable(T)
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C =

1
Kp + Ki * ---

s

with Kp = 0.000846, Ki = 0.0103

Name: C
Continuous-time PI controller in parallel form.
-----------------------------------
a = 5.49e+03

Use getBlockValue to get the tuned value of and use getValue to evaluate
the filter for the tuned value of :

C = getBlockValue(T,'C');
F = getValue(F0,T.Blocks); % propagate tuned parameters from T to F

tf(F)

ans =

From input "yn" to output "yf":
5486

--------
s + 5486

Continuous-time transfer function.

To validate the design, plot the open-loop response L=F*G*C and compare
with the target loop shape LS:

bode(LS,'r--',G*C*F,'b',{1e1,1e6}), grid,
title('Open-loop response'), legend('Target','Actual')
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The 0dB crossover frequency and overall loop shape are as expected. The
stability margins can be read off the plot by right-clicking and selecting the
Characteristics menu. This design has 24dB gain margin and 81 degrees
phase margin. Plot the closed-loop step response from reference r to position y:

step(feedback(G*C,F)), grid, title('Closed-loop response')

While the response has no overshoot, there is some residual wobble due to
the first resonant peaks in G. You might consider adding a notch filter in the
forward path to remove the influence of these modes.

Tuning the Controller Gains from Simulink

Suppose you used this Simulink model to represent the control structure.
If you have Simulink Control Design installed, you can tune the controller
gains from this Simulink model as follows. First mark the signals r,e,y,n
as Linear Analysis points in the Simulink model.

Then create an instance of the slTuner interface and mark the Simulink
blocks C and F as tunable:

ST0 = slTuner('rct_diskdrive',{'C','F'});

Since the filter has a special structure, explicitly specify how to parameterize
the F block:

a = realp('a',1); % filter coefficient
setBlockParam(ST0,'F',tf(a,[1 a]));

Finally, use getIOTransfer to derive a tunable model of the closed-loop
transfer function (see Figure 2)

% Compute tunable model of closed-loop transfer (r,n) -> (y,e)
T0 = getIOTransfer(ST0,{'r','n'},{'y','e'});

% Add weighting functions in n and e channels
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T0 = blkdiag(1,LS) * T0 * blkdiag(1,1/LS);

You are now ready to tune the controller gains with hinfstruct:

rng(0)
opt = hinfstructOptions('Display','final','RandomStart',5);
T = hinfstruct(T0,opt);

Final: Peak gain = 3.93, Iterations = 120
Final: Peak gain = 1.56, Iterations = 100
Final: Peak gain = 597, Iterations = 192

Some closed-loop poles are marginally stable (decay rate near 1e-07)
Final: Peak gain = 3.9, Iterations = 108
Final: Peak gain = 1.56, Iterations = 103
Final: Peak gain = 3.88, Iterations = 75

Verify that you obtain the same tuned values as with the MATLAB approach:

showTunable(T)

C =

1
Kp + Ki * ---

s

with Kp = 0.000846, Ki = 0.0103

Name: C
Continuous-time PI controller in parallel form.
-----------------------------------
a = 5.49e+03
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MIMO Control of Diesel Engine
This example uses systune to design and tune a MIMO controller for a
Diesel engine. The controller is tuned in discrete time for a single operating
condition.

Diesel Engine Model

Modern Diesel engines use a variable geometry turbocharger (VGT) and
exhaust gas recirculation (EGR) to reduce emissions. Tight control of the
VGT boost pressure and EGR massflow is necessary to meet strict emission
targets. This example shows how to design and tune a MIMO controller that
regulates these two variables when the engine operates at 2100 rpm with a
fuel mass of 12 mg per injection-cylinder.

open_system('rct_diesel')

The VGT/EGR control system is modeled in Simulink. The controller adjusts
the positions EGRLIFT and VGTPOS of the EGR and VGT valves. It has access
to the boost pressure and EGR massflow targets and measured values, as
well as fuel mass and engine speed measurements. Both valves have rate
and saturation limits. The plant model is sampled every 0.1 seconds and the
control signals EGRLIFT and VGTPOS are refreshed every 0.2 seconds. This
example considers step changes of +10 KPa in boost pressure and +3 g/s in
EGR massflow, and disturbances of +5 mg in fuel mass and -200 rpm in speed.

For the operating condition under consideration, we used System
Identification to derive a linear model of the engine from experimental data.
The frequency response from the manipulated variables EGRLIFT and VGTPOS
to the controlled variables BOOST and EGR MF appears below. Note that the
plant is ill conditioned at low frequency which makes independent control of
boost pressure and EGR massflow difficult.

sigma(Plant(:,1:2)), grid
title('Frequency response of the linearized engine dynamics')
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Control Objectives

There are two main control objectives:

1 Respond to step changes in boost pressure and EGR massflow in about 5
seconds with minimum cross-coupling

2 Be insensitive to (small) variations in speed and fuel mass.

Use a tracking requirement for the first objective. Specify the amplitudes of
the step changes to ensure that cross-couplings are small relative to these
changes.

% 5-second response time, steady-state error less than 5%
TR = TuningGoal.Tracking({'BOOST REF';'EGRMF REF'},{'BOOST';'EGRMF'},5,5e-2
TR.Name = 'Setpoint tracking';
TR.InputScaling = [10 3];

For the second objective, treat speed and fuel mass as disturbances and
require that the sensitivity to these disturbances be small at low frequency
and gradually increase as we approach the control bandwidth. Specify
the signal amplitudes to properly reflect the relative contribution of each
disturbance.

s = tf('s');
DR = TuningGoal.Gain({'FUELMASS';'SPEED'},{'BOOST';'EGRMF'},0.2*s/(s+0.05))
DR.Name = 'Rejection';
DR.InputScaling = [5 200];
DR.OutputScaling = [10 3];

viewSpec(DR)

To provide adequate robustness to unmodeled dynamics and aliasing, limit
the control bandwidth and impose sufficient stability margins at both the
plant inputs and outputs. Because we are dealing with a 2-by-2 MIMO
feedback loops, these stability margins are interpreted as disk margins (see
loopmargin and TuningGoal.Margins for details).

% Roll off of -20 dB/dec past 1 rad/s
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RO = TuningGoal.MaxLoopGain({'EGRLIFT','VGTPOS'},1,1);
RO.LoopScaling = 'off';
RO.Name = 'Rolloff';

% 7 dB of gain margin and 45 degrees of phase margin
M1 = TuningGoal.Margins({'EGRLIFT','VGTPOS'},7,45);
M1.Name = 'Plant input';
M2 = TuningGoal.Margins('DIESEL ENGINE',7,45);
M2.Name = 'Plant output';

Tuning of Blackbox MIMO Controller

Without a-priori knowledge of a suitable control structure, first try "blackbox"
state-space controllers of various orders. The plant model has four states, so
try a controller of order four or less. Here we tune a second-order controller
since the "SS2" block in the Simulink model has two states.

Figure 1: Second-order blackbox controller.

Use the slTuner interface to configure the Simulink model for tuning. Mark
the block "SS2" as tunable, register the locations where to assess margins and
loop shapes, and specify that linearization and tuning should be performed at
the controller sampling rate.

ST0 = slTuner('rct_diesel','SS2');
ST0.Ts = 0.2;
addPoint(ST0,{'EGRLIFT','VGTPOS','DIESEL ENGINE'})

Now use systune to tune the state-space controller subject to our control
objectives. Treat the stability margins and roll-off target as hard constraints
and try to best meet the remaining objectives (soft goals). Randomize the
starting point to reduce exposure to undesirable local minima.

Opt = systuneOptions('RandomStart',2);
rng(0), [ST1,~,~,Info1] = systune(ST0,[TR DR],[M1 M2 RO],Opt);

Final: Soft = 1.08, Hard = 0.87819, Iterations = 580
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Final: Soft = 1.05, Hard = 0.97739, Iterations = 454
Final: Soft = 1.05, Hard = 0.9623, Iterations = 521

All requirements are nearly met (a requirement is satisfied when its
normalized value is less than 1). Verify this graphically.

viewSpec([TR DR RO M1 M2],ST1,Info1)

Plot the setpoint tracking and disturbance rejection responses. Scale by the
signal amplitudes to show normalized effects (boost pressure changes by +10
KPa, EGR massflow by +3 g/s, fuel mass by +5 mg, and speed by -200 rpm).

clf
T1 = getIOTransfer(ST1,{'BOOST REF';'EGRMF REF'},{'BOOST','EGRMF','EGRLIFT'
T1 = diag([1/10 1/3 1 1]) * T1 * diag([10 3]);
subplot(211), step(T1(1:2,:),20), title('Setpoint tracking')
subplot(212), step(T1(3:4,:),20), title('Control effort')

D1 = getIOTransfer(ST1,{'FUELMASS';'SPEED'},{'BOOST','EGRMF','EGRLIFT','VGT
D1 = diag([1/10 1/3 1 1]) * D1 * diag([5 -200]);
subplot(211), step(D1(1:2,:),20), title('Disturbance rejection')
subplot(212), step(D1(3:4,:),20), title('Control effort')

The controller responds in less than 5 seconds with minimum cross-coupling
between the BOOST and EGRMF variables.

Tuning of Simplified Control Structure

The state-space controller could be implemented as is, but it is often desirable
to boil it down to a simpler, more familiar structure. To do this, get the tuned
controller and inspect its frequency response

C = getBlockValue(ST1,'SS2');

clf
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bode(C(:,1:2),C(:,3:4),{.02 20}), grid
legend('REF to U','Y to U')

bodemag(C(:,5:6)), grid
title('Bode response from FUELMASS/SPEED to EGRLIFT/VGTPOS')

The first plot suggests that the controller essentially behaves like a PI
controller acting on REF-Y (the difference between the target and actual
values of the controlled variables). The second plot suggests that the transfer
from measured disturbance to manipulated variables could be replaced by a
simple gain. Altogether this suggests the following simplified control structure
consisting of a MIMO PI controller with a disturbance feedforward gain.

Figure 2: Simplified control structure.

Using variant subsystems, you can implement both control structures in
the same Simulink model and use a variable to switch between them. Here
setting MODE=2 selects the MIMO PI structure. Again use systune to tune the
three 2-by-2 gain matrices Kp, Ki, Kff in the simplified control structure.

% Select "MIMO PI" variant in "CONTROLLER" block
MODE = 2;

% Configure tuning interface
ST0 = slTuner('rct_diesel',{'Kp','Ki','Kff'});
ST0.Ts = 0.2;
addPoint(ST0,{'EGRLIFT','VGTPOS','DIESEL ENGINE'})

% Tune MIMO PI controller.
[ST2,~,~,Info2] = systune(ST0,[TR DR],[M1 M2 RO]);

Final: Soft = 1.07, Hard = 0.99626, Iterations = 253
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Again all requirements are nearly met.

viewSpec([TR DR RO M1 M2],ST2,Info2)

Plot the closed-loop responses and compare with the state-space design.

clf
T2 = getIOTransfer(ST2,{'BOOST REF';'EGRMF REF'},{'BOOST','EGRMF','EGRLIFT'
T2 = diag([1/10 1/3 1 1]) * T2 * diag([10 3]);
subplot(211), step(T1(1:2,:),T2(1:2,:),20), title('Setpoint tracking')
legend('SS2','PI+FF')
subplot(212), step(T1(3:4,:),T2(3:4,:),20), title('Control effort')

D2 = getIOTransfer(ST2,{'FUELMASS';'SPEED'},{'BOOST','EGRMF','EGRLIFT','VGT
D2 = diag([1/10 1/3 1 1]) * D2 * diag([5 -200]);
subplot(211), step(D1(1:2,:),D2(1:2,:),20), title('Disturbance rejection')
legend('SS2','PI+FF')
subplot(212), step(D1(3:4,:),D2(3:4,:),20), title('Control effort')

The blackbox and simplified control structures deliver similar performance.
Inspect the tuned values of the PI and feedforward gains.

showTunable(ST2)

Block 1: rct_diesel/CONTROLLER/MIMO PID/Kp =

d =
u1 u2

y1 -0.006688 0.001778
y2 -0.01786 0.01865

Name: Kp
Static gain.
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-----------------------------------

Block 2: rct_diesel/CONTROLLER/MIMO PID/Ki =

d =
u1 u2

y1 -0.007889 0.003068
y2 -0.02346 0.07097

Name: Ki
Static gain.

-----------------------------------

Block 3: rct_diesel/CONTROLLER/MIMO PID/Kff =

d =
u1 u2

y1 0.01675 0.0003041
y2 0.05472 -0.0004848

Name: Kff
Static gain.

Nonlinear Validation

To validate the MIMO PI controller in the Simulink model, push the tuned
controller parameters to Simulink and run the simulation.

writeBlockValue(ST2)

The simulation results are shown below and confirm that the controller
adequately tracks setpoint changes in boost pressure and EGR massflow and
quickly rejects changes in fuel mass (at t=90) and in speed (at t=110).

Figure 3: Simulation results with simplified controller.
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Digital Control of Power Stage Voltage
This example shows how to tune a high-performance digital controller with
bandwidth close to the sampling frequency.

Voltage Regulation in Power Stage

We use Simulink to model the voltage controller in the power stage for an
electronic device:

open_system('rct_powerstage')

The power stage amplifier is modeled as a second-order linear system with
the following frequency response:

bode(psmodel), grid

The controller must regulate the voltage Vchip delivered to the device to
track the setpoint Vcmd and be insensitive to variations in load current iLoad.
The control structure consists of a feedback compensator and a disturbance
feedforward compensator. The voltage Vin going into the amplifier is limited
to . The controller sampling rate is 10 MHz (sample time Tm is 1e-7 seconds).

Performance Requirements

This application is challenging because the controller bandwidth must
approach the Nyquist frequency pi/Tm = 31.4 MHz. To avoid aliasing troubles
when discretizing continuous-time controllers, it is preferable to tune the
controller directly in discrete time.

The power stage should respond to a setpoint change in desired voltage Vcmd
in about 5 sampling periods with a peak error (across frequency) of 50%. Use
a tracking requirement to capture this objective.

Req1 = TuningGoal.Tracking('Vcmd','Vchip',5*Tm,0,1.5);
Req1.Name = 'Setpoint change';
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viewSpec(Req1)

The power stage should also quickly reject load disturbances iLoad. Express
this requirement in terms of gain from iLoad to Vchip. This gain should be
low at low frequency for good disturbance rejection.

s = tf('s');
nf = pi/Tm; % Nyquist frequency

Req2 = TuningGoal.Gain('iLoad','Vchip',1.5e-3 * s/nf);
Req2.Focus = [nf/1e4, nf];
Req2.Name = 'Load disturbance';

High-performance demands may lead to high control effort and saturation.
For the ramp profile vcmd specified in the Simulink model (from 0 to 1 in about
250 sampling periods), we want to avoid hitting the saturation constraint .
Use a rate-limiting filter to model the ramp command, and require that the
gain from the rate-limiter input to be less than .

RateLimiter = 1/(250*Tm*s); % models ramp command in Simulink

% |RateLimiter * (Vcmd->Vin)| < Vmax
Req3 = TuningGoal.Gain('Vcmd','Vin',Vmax/RateLimiter);
Req3.Focus = [nf/1000, nf];
Req3.Name = 'Saturation';

To ensure adequate robustness, require at least 7 dB gain margin and 45
degrees phase margin at the plant input.

Req4 = TuningGoal.Margins('Vin',7,45);
Req4.Name = 'Margins';

Finally, the feedback compensator has a tendency to cancel the plant
resonance by notching it out. Such plant inversion may lead to poor results
when the resonant frequency is not exactly known or subject to variations.
To prevent this, impose a minimum closed-loop damping of 0.5 to actively
damp of the plant’s resonant mode.

Req5 = TuningGoal.Poles;
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Req5.MinDamping = 0.5;
Req5.MaxFrequency = 3*nf;
Req5.Name = 'Damping';

Tuning

Next use systune to tune the controller parameters subject to the
requirements defined above. First use the slTuner interface to configure the
Simulink model for tuning. In particular, specify that there are two tunable
blocks and that the model should be linearized and tuned at the sample
time Tm.

TunedBlocks = {'compensator','FIR'};
ST0 = slTuner('rct_powerstage',TunedBlocks);
ST0.Ts = Tm;

% Register points of interest for open- and closed-loop analysis
addPoint(ST0,{'Vcmd','iLoad','Vchip','Vin'});

We want to use an FIR filter as feedforward compensator. To do this, create a
parameterization of a first-order FIR filter and assign it to the "Feedforward
FIR" block in Simulink.

FIR = ltiblock.tf('FIR',1,1,Tm);
% Fix denominator to z^n
FIR.den.Value = [1 0];
FIR.den.Free = false;
setBlockParam(ST0,'FIR',FIR);

Note that slTuner automatically parameterizes the feedback compensator as
a third-order state-space model (the order specified in the Simulink block).
Next tune the feedforward and feedback compensators with systune. Treat
the damping and margin requirements as hard constraints and try to best
meet the remaining requirements.

rng(0)
topt = systuneOptions('RandomStart',6);
ST = systune(ST0,[Req1 Req2 Req3],[Req4 Req5],topt);

Final: Soft = 1.29, Hard = 0.99993, Iterations = 372
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Final: Soft = 1.48, Hard = 0.98648, Iterations = 315
Final: Soft = 1.75, Hard = 0.99991, Iterations = 323
Final: Soft = 1.29, Hard = 0.99933, Iterations = 421
Final: Soft = 1.29, Hard = 0.99908, Iterations = 325
Final: Soft = 1.29, Hard = 0.99743, Iterations = 452
Final: Soft = 1.29, Hard = 0.99927, Iterations = 402

The best design satisfies the hard constraints (Hard less than 1) and nearly
satisfies the other constraints (Soft close to 1). Verify this graphically by
plotting the tuned responses for each requirement.

viewSpec([Req1 Req2 Req3 Req4 Req5],ST)

Validation

First validate the design in the linear domain using the slTuner interface.
Plot the closed-loop response to a step command Vcmd and a step disturbance
iLoad.

clf
subplot(211), step(getIOTransfer(ST,'Vcmd','Vchip'),20*Tm)
title('Response to step command in voltage')
subplot(212), step(getIOTransfer(ST,'iLoad','Vchip'),20*Tm)
title('Rejection of step disturbance in load current')

Use getLoopTransfer to compute the open-loop response at the plant input
and superimpose the plant and feedback compensator responses.

clf
L = getLoopTransfer(ST,'Vin',-1);
C = getBlockValue(ST,'compensator');
bodeplot(L,psmodel(2),C(2),{1e-3/Tm pi/Tm}), grid
legend('Open-loop response','Plant','Compensator')
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The controller achieves the desired bandwidth and the responses are fast
enough. Apply the tuned parameter values to the Simulink model and
simulate the tuned responses.

writeBlockValue(ST)

The results from the nonlinear simulation appear below. Note that the control
signal Vin remains approximately within saturation bounds for the setpoint
tracking portion of the simulation.

Figure 1: Response to ramp command and step load disturbances.

Figure 2: Amplitude of input voltage Vin during setpoint tracking
phase.
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8 Gain-Scheduled Controllers

Gain-Scheduled Control Systems
A gain-scheduled controller is a controller whose gains are automatically
adjusted as a function of time, operating condition, or plant parameters. Gain
scheduling is a common strategy for controlling systems whose dynamics
change with time or operating condition. Such systems include linear
parameter-varying (LPV) systems and large classes of nonlinear systems.
Gain scheduling is most suitable when the scheduling variables are external
parameters that vary slowly compared to the control bandwidth, such as
ambient temperature of a reaction or speed of a cruising aircraft. Gain
scheduling is most challenging when the scheduling variables depend on
fast-varying states of the system. Because local linear performance near
operating points is no guarantee of global performance in nonlinear systems,
extensive simulation-based validation is usually required. See [1] for an
overview of gain scheduling and its challenges.

Typically, gain-scheduled controllers are fixed single-loop or multi-loop
control structures that use lookup tables to specify gain values as a function
of the scheduling variables. For tuning purposes, it is convenient to replace
lookup tables by parametric gain surfaces. A parametric gain surface is a
basis-function expansion whose coefficients are tunable. For example, you can
model a time-varying gain k(t) as a cubic polynomial in t:

k(t) = k0 + k1t + k2t
2 + k3t

3.

Here, k0,...,k3 are tunable coefficients. For applications where gains vary
smoothly with the scheduling variables, this approach drastically reduces
the number of tunable parameters. This approach also provides explicit
formulas for the gains, and ensures smooth transitions between operating
points. In addition, you can use systune to automatically tune the gain
surface coefficients to meet your control objectives at a representative set of
operating conditions.

References
[1] Rugh, W.J., and J.S. Shamma, “Research on Gain Scheduling”,
Automatica, 36 (2000), pp. 1401-1425.
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Plant Models for Gain-Scheduled Control

In this section...

“Gain Scheduling for Linear Parameter-Varying Plants” on page 8-4

“Gain Scheduling for Nonlinear Plants” on page 8-5

Gain Scheduling for Linear Parameter-Varying Plants
Gain-scheduled controllers are usually designed and tuned using a family of
linear models that depend on the scheduling variables, σ:

dx
dt

A x B u

y C x D u

     
     

 

  .

This family of models is called a linear parameter-varying (LPV) model. The
LPV model describes how the (linearized) plant dynamics vary with time,
operating condition, or any other scheduling variable. For example, the pitch
axis dynamics of an aircraft can be approximated by an LPV model that
depends on incidence angle, α, air speed, V, and altitude, h.

In practice, this continuum of plant models is often replaced by a finite set
of linear models obtained for a suitable grid of σ values. This amounts to
sampling the LPV dynamics over the operating range and selecting a set of
representative design points.
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For best results with a gain-scheduled controller, the plant dynamics should
vary smoothly between design points.

When you are tuning a gain-scheduled controller for an LPV plant, you can
use a sampled array of LTI plant models. Use the SamplingGrid property
of the LTI model array to associate each linear models in the set with the
underlying design points, σ. For example, see “Sample a Tunable (Parametric)
Model for Parameter Studies”.

Gain Scheduling for Nonlinear Plants
In most applications, the plant is not given as an LPV model or a collection
of linear models. Instead, the plant dynamics are described by nonlinear
differential equations of the form:

x f x u

y g x u

  
  

,

, .
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8 Gain-Scheduled Controllers

x is the state vector, u is the plant input, and y is the plant output. These
equations can be specified explicitly. Or, they can be specified implicitly,
such as by a Simulink model. For nonlinear plants, the linearized dynamics
describe the local behavior of the plant around a family of operating points
(x(σ),u(σ)) parameterized by the scheduling variables, σ. Specifically, the
deviations from nominal operating condition are defined as:

   x x x u u u       , .

These deviations are governed, to first order, by the LPV dynamics:

         

   

x A x B u y C x D u

A
f
x

x u B

           

   


     

, ,

,   


    

   


        


    

f
u

x u

C
g
x

x u D
g
u

x u

 

     

,

, , ..

When repeated for a finite set of design points, σ, this local linearization
produces the type of sampled LPV model described in “Gain Scheduling for
Linear Parameter-Varying Plants” on page 8-4.

When your nonlinear plant is modeled in Simulink, you can use Simulink
Control Design linearization tools to compute A(σ), B(σ) ,C(σ), and D(σ) for
specific values of σ. If the operating points are equilibrium points, you might
need to first use findop to compute (x(σ),u(σ)) as a function of σ. If you are
controlling the system around a reference trajectory (x(σ),u(σ)), you can use
snapshot linearization to acquire A(σ), B(σ) ,C(σ), and D(σ) at various points
along the σ trajectory. This second scenario includes time-varying systems
where the scheduling variable is time. In either case, the result is a collection
of linear models sampled at values of σ.

Typically, the gain-scheduled controller’s main task is to keep the closed-loop
system close to equilibrium or close to the nominal trajectory, (x(σ),u(σ)). The
controller provides a corrective action δu which must be added to the nominal
command u(σ) to determine the total actuator command.
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Concepts • “Gain-Scheduled Control Systems” on page 8-2
• “Parametric Gain Surfaces” on page 8-8
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Parametric Gain Surfaces
In a gain-scheduled controller, the gains, which are the tunable parameters,
are functions of the scheduling variables, σ. For example, a gain-scheduled
PI controller is of the form:

C s K
K

sp
i, . 


       

Tuning arbitrary functions is difficult. Therefore, it is necessary either to
discretize the operating range, or restrict the generality of the functions
themselves.

In the first approach, a collection of design points, σ, is chosen. Then, the
gains, Kp and Ki, are tuned independently at each design point. The resulting
set of gain values is stored in a lookup table driven by the scheduling
variables, σ. A drawback of this approach is that the tuning method may
yield substantially different values for neighboring design points, leading to
undesirable jumps when transitioning from one operating point to another.

Alternatively, you can model the gains as smooth functions of σ, but restrict
the generality of such functions by using specific basis function expansions.
For example, suppose σ is a scalar variable. You can model Kp(σ) as a
quadratic function of σ:

K k k kp       0 1 2
2.

After tuning, this parametric gain might have a profile such as the following
(the specific shape of the curve depends on the tuned coefficient values and
range of σ):
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Or, suppose that σ consists of two scheduling variables, α, and V. Then, you
can model Kp(σ) as a bilinear function of α and V:

K V k k k V k Vp   , .     0 1 2 3

After tuning, this parametric gain might have a profile such as the following
(again, the specific shape of the curve depends on the tuned coefficient values
and ranges of σ values):
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In general, a parametric gain surface is a particular expansion of the gain
in basis functions of σ:

K K K f K fM M           0 1 1  .

The basis functions f1,...,fM are user-selected and fixed. The coefficients of the
expansion, K0,...,KM, are the tunable parameters of the gain surface. K0,...,KM
can be scalar or matrix-valued, depending on the size of the gain K(σ). The
choice of basis function is problem-dependent, but it is generally good to try
low-order polynomial expansions first.

To tune a gain-scheduled controller with systune, use the gainsurf command
to construct a tunable model of a gain surface sampled over a grid of design
points (σ values). For example, consider the gain with bilinear dependence on
two scheduling variables, α, and V:
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K V k k k V k Vp   , .     0 1 2 3

Suppose that α is an angle of incidence that ranges from 0 to 15 degrees, and
V is a speed that ranges from 300 to 600 m/s. Create a grid of design points
that span these ranges.

[alpha,V] = ndgrid(0:5:15,300:100:600);

Specify the values of the basis functions f1 = α, f2 = V, f3 = αV over the grid
of design points.

F1 = alpha;
F2 = V;
F3 = alpha.*V;

Kp = gainsurf('Kp',1,F1,F2,F3);

Kp is a tunable model of the gain surface, Kp(α,V) This model contains the
tunable coefficients k0, k1, k2, and k3.

You can use such gain surface models to construct more sophisticated
gain-scheduled control elements, such as gain-scheduled PID controllers,
filters, or state-space controllers. For example, suppose you create two gain
surfaces Kp and Ki sampled over the same σ grid. The following command
constructs a gain-scheduled tunable PI controller.

C = pid(Kp,Ki);

Similarly, suppose you create four matrix-valued gain surfaces A, B, C, D
sampled over the same σ. The following command constructs a gain-scheduled
state-space controller:

C = ss(A,B,C,D);

While gain surfaces are tuned at a finite set of design points, they are
guaranteed to vary as smoothly as the underlying basis functions from one
design point to another.

See Also gainsurf
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Related
Examples

• “Tunable Gain Surface With Two Scheduling Variables” on page 8-18
• “Gain-Scheduled PID Controller” on page 8-22

Concepts • “Plant Models for Gain-Scheduled Control” on page 8-4
• “Tuning Gain-Scheduled Controllers” on page 8-13
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Tuning Gain-Scheduled Controllers
You can use systune to automatically tune gain-scheduled controllers
modeled with parametric gain surfaces. The tuning workflow is as follows:

1 Select a set of design points, σ, that adequately covers the operating range.
The set can be a regular grid of σ values or a scattered set of values.
Typically, start with a small number of design points. If the performance
your tuned system achieved at the design points is not maintained in
between design points, you can add more design points and retune.

2 Build a collection of linear models describing the linearized plant dynamics
at the selected design points. You can do so by:

• Linearizing a Simulink model at each operating condition, σ (requires
Simulink Control Design).

• Sampling an LPV model of the plant at the design points.

3 Use gain surfaces to model the gain-scheduled controller. Sample these
gain surfaces at the same design points, σ.

4 Combine the plant and controller models to build a closed-loop model. The
resulting model array covers all design points and depends on the tunable
coefficients of the gain surfaces.

5 Use systune to tune the gain surface coefficients subject to suitable
requirements at each design point. From the systune perspective, doing
so amounts to tuning one set of parameters against many plant models
(multi-model tuning).

Related
Examples

• “Tuning of Gain-Scheduled Three-Loop Autopilot” on page 8-24
• Gain Scheduled Control Of a Chemical Reactor

Concepts • “Plant Models for Gain-Scheduled Control” on page 8-4
• “Parametric Gain Surfaces” on page 8-8
• “Validating Gain-Scheduled Controllers” on page 8-14
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8 Gain-Scheduled Controllers

Validating Gain-Scheduled Controllers
Gain-scheduled controllers require careful validation. The tuning process only
guarantees suitable performance in the neighborhood of each design point.
In addition, the tuning ignores dynamic couplings between the plant state
variables and the scheduling variables (see Section 4.3, “Hidden Coupling”, in
[1]). Recommended validation includes:

• Check linear performance on a denser grid of σ values than you used for
design. If adequate linear performance is not maintained between design
points, you can add more design points and retune.

• Perform nonlinear simulations that drive the closed-loop system through
its entire operating range. Pay special attention to maneuvers that cause
rapid variations of the scheduling variables.

References
[1] Rugh, W.J., and J.S. Shamma, “Research on Gain Scheduling”,
Automatica, 36 (2000), pp. 1401-1425.

Related
Examples

• “Tuning of Gain-Scheduled Three-Loop Autopilot” on page 8-24
• Gain Scheduled Control Of a Chemical Reactor

Concepts • “Improving Gain-Scheduled Tuning Results” on page 8-15
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Improving Gain-Scheduled Tuning Results

In this section...

“Normalize the Scheduling Variables” on page 8-15

“Changing Requirements With Operating Condition” on page 8-16

Normalize the Scheduling Variables
Suppose you are scheduling with respect to a variable h (altitude) that ranges
between 5,000 and 10,000 feet. Further, suppose you use a cubic polynomial
model for the gain k(h):

k h k k h k h k h     0 1 2
2

3
3.

The terms h2 and h3 are of order 104 and 108, respectively. You can therefore
expect k2 to be roughly 10

4 times smaller than k1, and k3 to be 10
8 times

smaller than k1, to compensate. This means that the entries of the vector
of tunable variables vary by as many as 8 orders of magnitude. Such wide
variation may be detrimental to the performance and accuracy of the solvers
used by systune.

To avoid such scaling issues, it is good practice to normalize the scheduling
variables so that they vary in the range [-1,1]. For a variable x taking values
in [xmin,xmax], this normalization is a simple change of variable of the form:

x
x x

dx

x
x x

dx
x x

N
mean

mean
min max

max min










,

,

.

2

2

You then create gain surfaces that depend on the normalized scheduling
variables, rather than the original scheduling variables. You must perform
the same normalization when implementing the tuned controller.
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For an example of a gain surface using normalized scheduling variables, see
“Tunable Gain Surface With Two Scheduling Variables” on page 8-18.

Changing Requirements With Operating Condition
It is not uncommon to have the control objectives themselves vary with the
operating condition. In this case, the control objectives also depend on the
scheduling variables. For example, your system might require a reduced
control bandwidth if transmission delays increase or temperature drops. The
software offers two approaches to tuning to with such scheduled requirements.

• Create a separate instance of the requirement for each design point. For
example, suppose you want to enforce a 1/s loop shape with a crossover
frequency that depends on the scheduling variables. Suppose also that you
have created a table, wc, that contains the target bandwidth for each design
point, σ. Then you can construct one TuningGoal.LoopShape requirement
for each design point. Associate each TuningGoal.LoopShape requirement
with the corresponding design point using the Models property.

for ct=1:num_design_points
R(ct) = TuningGoal.LoopShape('u',wc(ct));
R(ct).Model = ct;

end

• Incorporate the varying portion of the requirement into the closed-loop
model of the control system. For example, suppose you want to limit the
gain from d to y to a quantity, γ, that depends on the scheduling variables.
Suppose that T0 is an array of models of the closed-loop system at each
design point, and suppose you have created a table, gmax, of γ values
for each design point, σ. Then you can add a new output ys = y/γ to the
closed-loop model, as follows:

% Create array of scalar gains 1/gamma
yScaling = reshape(1./gmax,[1 1 size(gmax)]);
yScaling = ss(yScaling,'InputName','y','OutputName','ys');

% Add these gains in series to y output of T0
T0 = connect(T0,yScaling,T0.InputName,[T0.OutputName ; {'ys'}]);
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The value of γ changes at each design point according to the table gmax.
You can then use a single requirement that limits to 1 the gain from d to
the scaled output ys.

R = TuningGoal.Gain('d','ys',1);

Such effective normalization of requirements moves the requirement
variability from the requirement object, R, to the closed-loop model, T0.

In Simulink, you can use a similar approach by feeding the relevant model
inputs and outputs through a gain block. Then, when you linearize the
model, change the gain value of the block with the operating condition. For
example, set the gain to a MATLAB variable, and use the Parameters
property in slLinearizer to change the variable’s value with each
linearization condition.
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Tunable Gain Surface With Two Scheduling Variables
This example shows how to model a scalar gain K with a bilinear dependence
on two scheduling variables, α and V, as follows:

K V K K K V K VN N N N N N  , .     0 1 2 3

For this example, α is an angle of incidence that ranges from 0 to 15 degrees,
and V is a speed that ranges from 300 to 600 m/s. The coefficients K0,...,K3
are the tunable parameters of this variable gain.

Create a grid of design points, (α,V), that are linearly spaced in α and V. These
design points are where you will tune the gain surface coefficients.

[alpha,V] = ndgrid(0:5:15,300:100:600);

These arrays, alpha and V, represent the independent variation of the two
scheduling variables, each across its full range.

When you tune the gain surface coefficients with systune, you might obtain
better solver performance by normalizing the scheduling variables to fall
within the interval [–1,1]. Scale the α and V grid to fall within this range.

alphaN = alpha/15;
VN = (V-450)/150;

Create the tunable gain surface sampled at the grid of (αN,VN) values:

K V K K K V K VN N N N N N  , .     0 1 2 3

In this expansion, the basis functions are:

F V

F V V

F V V

N N N

N N N

N N N N

1

2

3

 



 

,

,

, .

  
  
  

Specify the values of the basis functions over the (αN,VN).
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F1 = alphaN;
F2 = VN;
F3 = alphaN.*VN;

K = gainsurf('K',1,F1,F2,F3)

K =

4x4 array of generalized matrices with 1 rows, 1 columns, and the followi
K_0: Scalar parameter, 1 occurrences.
K_1: Scalar parameter, 1 occurrences.
K_2: Scalar parameter, 1 occurrences.
K_3: Scalar parameter, 1 occurrences.

Type "double(K)" to see the current value, "get(K)" to see all properties,

K is an array of generalized matrices. Each element in K corresponds to
K(αN,VN) for a particular (αN,VN) pair, and depends on the tunable coefficients
K_0,...,K_3.

Associate the independent variable values with the corresponding values of K.

K.SamplingGrid = struct('alpha',alpha,'V',V);

The SamplingGrid property keeps track of the scheduling variable values
associated with each entry in K. This association is convenient for tracing
results back to independent variable values. For instance, you can use
view(K) to inspect the tuned values of the gain surface after tuning.
When you do so, view takes the axis range and labels from the entries in
SamplingGrid. For this example, instead of tuning, manually set the values
of the tunable blocks to non-zero values. View the resulting gain surface as a
function of the scheduling variables.

values = struct('K_0',1,'K_1',-1,'K_2',0.1,'K_3',-0.2);
Ktuned = setBlockValue(K,values);
view(Ktuned)
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The variable names and values that you specified in the SamplingGrid
property are used to scale and label the axes.

You can use K as a tunable gain to build a control system with gain-scheduled
tunable components. For example, use K to create a gain-scheduled low-pass
filter.

F = tf(K,[1 K]);

You can use gain surfaces as arguments to model creation commands like
tf the same way you would use numeric arguments. The resulting filter
is a generalized state-space (genss) model array that depends on the four
coefficients of the gain surface.
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Use model interconnection commands (such as connect and feedback) to
combine F with an array of plant models sampled at the same values of
α and V. You can then use systune to tune the gain-scheduled controller
to meet your design requirements. Because you normalized the scheduling
variables to model the tunable gain, you must adjust the coefficient values in
the implementation of your tuned controller.

Related
Examples

• “Gain-Scheduled PID Controller” on page 8-22
• “Tuning of Gain-Scheduled Three-Loop Autopilot” on page 8-24

Concepts • “Parametric Gain Surfaces” on page 8-8
• “Plant Models for Gain-Scheduled Control” on page 8-4
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Gain-Scheduled PID Controller
This example shows how to create a gain-scheduled PID controller. The
controller’s proportional, integral, and derivative gains have linear, quadratic,
and constant dependence on a scheduling variable, α as follows:

k k k

k k k k

k k

p p p

i i i i

p d

 

  



   

    

  

0 1

0 1 2
2

0.

For tuning purposes, sample these gain formulas for a number of values of
α. For example, sample the gain formulas for five values of α (five design
points) in [–1,1].

Create a vector of α values.

alpha = -1:0.5:1;

The PID gains depend on α and α2. Evaluate these functions.

F1 = alpha;
F2 = alpha.^2;

Create the tunable gain surfaces that represent the proportional, integral,
and derivative gains over the grid of α values. Initialize all the constant
coefficients to 1.

Kp = gainsurf('Kp',1,F1);
Ki = gainsurf('Ki',1,F1,F2);
Kd = gainsurf('Kd',1);

Each of Kp, Ki, and Kd is an array of generalized matrices. The array element
Kp(:,:,1) (for example) corresponds to kp(α) for α = –1. The element
Kp(:,:,2) corresponds to kp(α) for α = –0.5, and so on. These values depend
on tunable coefficients Kp_0, and Kp_1. Thus, each of Kp, Ki, and Kd represents
a gain curve in α with the appropriate number of tunable coefficients.

Combine the tunable gains into a PID controller. Set the derivative filter
time constant to a fixed value of 0.1.
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Tf = 0.1;
C = pid(Kp,Ki,Kd,Tf)

C =

1x5 array of generalized continuous-time state-space models.
Each model has 1 outputs, 1 inputs, 2 states, and the following blocks:

Kd: Scalar parameter, 1 occurrences.
Ki_0: Scalar parameter, 1 occurrences.
Ki_1: Scalar parameter, 1 occurrences.
Ki_2: Scalar parameter, 1 occurrences.
Kp_0: Scalar parameter, 1 occurrences.
Kp_1: Scalar parameter, 1 occurrences.

Type "ss(C)" to see the current value, "get(C)" to see all properties, and

You can use generalized matrices as arguments to model creation commands
like pid and tf the same way you would use numeric arguments. The
resulting controller is a generalized state-space (genss) model array that
depends on the six coefficients of the gain curves. Each entry in the array is a
PID controller evaluated at a particular value of α.

Associate the α values with the corresponding entries of C.

SG = struct('alpha',alpha);
C.SamplingGrid = SG;

Use model interconnection commands (such as connect and feedback) to
combine C with an array of plant models sampled at the same values of α. You
can then use systune to tune the gain-scheduled controller to meet your
design requirements.

Related
Examples

• “Tunable Gain Surface With Two Scheduling Variables” on page 8-18
• “Tuning of Gain-Scheduled Three-Loop Autopilot” on page 8-24

Concepts • “Parametric Gain Surfaces” on page 8-8
• “Plant Models for Gain-Scheduled Control” on page 8-4
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Tuning of Gain-Scheduled Three-Loop Autopilot
This example uses systune to generate smooth gain schedules for a three-loop
autopilot.

Airframe Model and Three-Loop Autopilot

This example uses a three-degree-of-freedom model of the pitch axis dynamics
of an airframe. The states are the Earth coordinates , the body coordinates ,
the pitch angle , and the pitch rate . Figure 1 summarizes the relationship
between the inertial and body frames, the flight path angle , the incidence
angle , and the pitch angle .

Figure 1: Airframe dynamics.

We use a classic three-loop autopilot structure to control the flight path
angle . This autopilot adjusts the flight path by delivering adequate bursts
of normal acceleration (acceleration along ). In turn, normal acceleration
is produced by adjusting the elevator deflection to cause pitching and vary
the amount of lift. The autopilot uses Proportional-Integral (PI) control in the
pitch rate loop and proportional control in the and loops. The closed-loop
system (airframe and autopilot) are modeled in Simulink.

open_system('rct_airframeGS')

Autopilot Gain Scheduling

The airframe dynamics are nonlinear and the aerodynamic forces and
moments depend on speed and incidence . To obtain suitable performance
throughout the flight envelope, the autopilot gains must be adjusted as
a function of and to compensate for changes in plant dynamics. This
adjustment process is called "gain scheduling" and are called the scheduling
variables.
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Gain scheduling is a linear technique for controlling nonlinear or time-varying
plants. The idea is to compute linear approximations of the plant at various
operating conditions, tune the controller gains at each operating condition,
and swap gains as a function of operating condition during operation.
Conventional gain scheduling involves three major steps:

1 Trim and linearize the plant at each operating condition

2 Tune the controller gains for the linearized dynamics at each operating
condition

3 Reconcile the gain values to provide smooth transition between operating
conditions.

In this example, we combine Steps 2. and 3. by parameterizing the autopilot
gains as first-order polynomials in and directly tuning the polynomial
coefficients for the entire flight envelope. This approach eliminates Step 3.
and guarantees smooth gain variations as a function of and . Moreover, the
gain schedule coefficients can be automatically tuned with systune.

Trimming and Linearization

Assume that the incidence varies between -20 and 20 degrees and that
the speed varies between 700 and 1400 m/s. When neglecting gravity, the
airframe dynamics are symmetric in so consider only positive values of . Use
a 5-by-9 grid of linearly spaced pairs to cover the flight envelope:

nA = 5; % number of alpha values
nV = 9; % number of V values
[alpha,V] = ndgrid(linspace(0,20,nA)*pi/180,linspace(700,1400,nV));

For each flight condition , linearize the airframe dynamics at trim (zero
normal acceleration and pitching moment). This requires computing the
elevator deflection and pitch rate that result in steady and . To do this, first
isolate the airframe model in a separate Simulink model.

open_system('rct_airframeTRIM')
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Use operspec to specify the trim condition, use findop to compute the
trim values of and , and linearize the airframe dynamics for the resulting
operating point. See the "Trimming and Linearizing an Airframe" example
in Simulink Control Design for details. Repeat these steps for the 45 flight
conditions .

% Compute trim condition for each (alpha,V) pair
clear op
for ct=1:nA*nV

alpha_ini = alpha(ct); % Incidence [rad]
v_ini = V(ct); % Speed [m/s]

% Specify trim condition
opspec = operspec('rct_airframeTRIM');
% Xe,Ze: known, not steady
opspec.States(1).Known = [1;1];
opspec.States(1).SteadyState = [0;0];
% u,w: known, w steady
opspec.States(3).Known = [1 1];
opspec.States(3).SteadyState = [0 1];
% theta: known, not steady
opspec.States(2).Known = 1;
opspec.States(2).SteadyState = 0;
% q: unknown, steady
opspec.States(4).Known = 0;
opspec.States(4).SteadyState = 1;

% TRIM
Options = findopOptions('DisplayReport','off');
op(ct) = findop('rct_airframeTRIM',opspec,Options);

end

% Linearization I/Os
io = [linio('rct_airframeTRIM/delta',1,'in');... % delta

linio('rct_airframeTRIM/Airframe Model',3,'out');... % q
linio('rct_airframeTRIM/Airframe Model',4,'out');... % az
linio('rct_airframeTRIM/Airframe Model',5,'out')]; % gamma

% Linearize at trim conditions
G = linearize('rct_airframeTRIM',op,io);
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G = reshape(G,[nA nV]);
G.u = 'delta';
G.y = {'q' 'az' 'gamma'};

This produces a 5-by-9 array of linearized plant models at the 45 flight
conditions . The plant dynamics vary substantially across the flight envelope.

sigma(G), title('Variations in airframe dynamics')

Autopilot Modeling

The autopilot consists of four gains that must be "scheduled" (adjusted) as a
function of and . Each "gain" is therefore a two-dimensional gain surface. As
a first cut, seek gain surfaces with a simple multi-linear dependence on and :

.

These gain surfaces are modeled in Simulink as follows:

Figure 2: Simulink model for the gain surface .

Use gainsurf to parameterize these gain surfaces in terms of the tunable
coefficients . To improve convergence of the tuning algorithm, it is
recommended to replace by normalized values ranging in [-1,1]:

% Subtract the mean value of alpha and divide by its half range
Mean = 10*pi/180; % mean = 10 degrees
HalfRange = Mean; % half range = 10 degrees
alpha_n = (alpha - Mean)/HalfRange; % varies in [-1,1]

% Subtract the mean value of V and divide by its half range
Mean = (700+1400)/2;
HalfRange = (1400-700)/2;
V_n = (V - Mean)/HalfRange; % varies in [-1,1]

8-27



8 Gain-Scheduled Controllers

% Create gain surfaces
Kp = gainsurf('Kp', 0.1, alpha_n, V_n, alpha_n.*V_n);
Ki = gainsurf('Ki', 2, alpha_n, V_n, alpha_n.*V_n);
Ka = gainsurf('Ka', 0.001, alpha_n, V_n, alpha_n.*V_n);
Kg = gainsurf('Kg', -1000, alpha_n, V_n, alpha_n.*V_n);

The initial values for the constant coefficient are based on tuning results for
= 10 deg and = 1000 m/s (mid-range design). Note that Kp, Ki,... are arrays of
matrices (one per flight condition) parameterized by the tunable coefficients .
To facilitate visualization, use the SamplingGrid property to keep track of
the dependence on :

% Grid of alpha,V values
SG = struct('alpha',alpha,'V',V);

Kp.SamplingGrid = SG;
Ki.SamplingGrid = SG;
Ka.SamplingGrid = SG;
Kg.SamplingGrid = SG;

Next construct a closed-loop model T0 by connecting the linearized airframe
model G, the second-order actuator model, and the autopilot gains Kp, Ki, Ka,
Kg according to the block diagram rct_airframeGS. The software lets you
manipulate the model arrays G, Kp, Ki,... as single entities (one block in the
block diagram).

% Actuator model
Act = tf(150^2,[1 2*0.7*150 150^2]);
Act.u = 'u'; Act.y = 'delta_d';

% Controller elements
Cq = pid(Kp,Ki);
Cq.u = 'eq'; Cq.y = 'u';
Ca = ss(Ka);
Ca.u = 'eaz'; Ca.y = 'q_ref';
Cg = ss(Kg);
Cg.u = 'eg'; Cg.y = 'az_ref';

% Summing junctions
S1 = sumblk('delta = delta_d + d');

8-28



Tuning of Gain-Scheduled Three-Loop Autopilot

S2 = sumblk('eq = q_ref + q');
S3 = sumblk('eaz = az_ref - az');
S4 = sumblk('eg = gamma_ref - gamma');

% Connect the blocks together
T0 = connect(G,Cq,Ca,Cg,S1,S2,S3,S4,Act,...

{'gamma_ref','az_ref','d'},{'gamma','az'})

T0 =

5x9 array of generalized continuous-time state-space models.
Each model has 2 outputs, 3 inputs, 7 states, and between 4 and 16 blocks

Type "ss(T0)" to see the current value, "get(T0)" to see all properties, an

This creates a 5-by-9 array of closed-loop models parameterized by the tunable
coefficients of the four gain surfaces.

Autopilot Tuning

systune can automatically tune the gain surface coefficients for the entire
flight envelope. Use TuningGoal objects to specify the performance objectives:

• loop: Track the setpoint with a 1 second response time, less than 2%
steady-state error, and less than 30% peak error.

Req1 = TuningGoal.Tracking('gamma_ref','gamma',1,0.02,1.3);
viewSpec(Req1)

• loop: Ensure good disturbance rejection at low frequency (to track
acceleration demands) and past 10 rad/s (to be insensitive to measurement
noise).

% Note: The disturbance is injected at the az_ref location
RejectionProfile = frd([0.02 0.02 1.2 1.2 0.1],[0 0.02 2 15 150]);
Req2 = TuningGoal.Gain('az_ref','az',RejectionProfile);
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viewSpec(Req2)

• loop: Ensure good disturbance rejection up to 10 rad/s

% Note: The disturbance d enters at the plant input
Req3 = TuningGoal.Gain('d','az',600*tf([0.25 0],[0.25 1]));
viewSpec(Req3)

• Transients: Ensure a minimum damping ratio of 0.35 for oscillation-free
transients

Req4 = TuningGoal.Poles;
Req4.MinDamping = 0.35;

Using systune, tune the 16 gain surface coefficients to best meet these
performance requirements at all 45 flight conditions.

T = systune(T0,[Req1 Req2 Req3 Req4]);

Final: Soft = 1.13, Hard = -Inf, Iterations = 78

The final value of the combined objective is close to 1, indicating that all
requirements are nearly met. Visualize the resulting gain surfaces.

% Use the tuned values of the gain surface coefficients
Kp = setBlockValue(Kp,T);
Ki = setBlockValue(Ki,T);
Ka = setBlockValue(Ka,T);
Kg = setBlockValue(Kg,T);

% Plot gain surfaces
clf
subplot(221), view(Kp), title('Kp')
subplot(222), view(Ki), title('Ki')
subplot(223), view(Ka), title('Ka')
subplot(224), view(Kg), title('Kg')
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Validation

First validate the tuned autopilot at the 45 flight conditions considered above.
Plot the response to a step change in flight path angle and the response to a
step disturbance in elevator deflection.

clf
subplot(211), step(T('gamma','gamma_ref'),5), grid
title('Tracking of step change in flight path angle')
subplot(212), step(T('az','d'),3), grid
title('Rejection of step disturbance at plant input')

The responses are satisfactory at all flight conditions. Next validate the
autopilot against the nonlinear airframe model. First push the tuned gain
surface coefficients to the Simulink model. The coefficients for the "Kp Gain"
block are named "Kp_0", "Kp_1", "Kp_2", "Kp_3", and similarly for the other
gain blocks.

[Kp_0,Kp_1,Kp_2,Kp_3] = gainsurfdata(Kp);
[Ki_0,Ki_1,Ki_2,Ki_3] = gainsurfdata(Ki);
[Ka_0,Ka_1,Ka_2,Ka_3] = gainsurfdata(Ka);
[Kg_0,Kg_1,Kg_2,Kg_3] = gainsurfdata(Kg);

Now simulate the autopilot performance for a maneuver that takes the
airframe through a large portion of its flight envelope.

% Initial conditions
h_ini = 1000;
alpha_ini = 0;
v_ini = 700;

% Simulate
SimOut = sim('rct_airframeGS', 'ReturnWorkspaceOutputs', 'on');

% Extract simulation data
SimData = get(SimOut,'sigsOut');
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Sim_gamma = getElement(SimData,'gamma');
Sim_alpha = getElement(SimData,'alpha');
Sim_V = getElement(SimData,'V');
Sim_delta = getElement(SimData,'delta');
Sim_h = getElement(SimData,'h');
Sim_az = getElement(SimData,'az');
t = Sim_gamma.Values.Time;

% Plot the main flight variables
clf
subplot(211)
plot(t,Sim_gamma.Values.Data(:,1),'r--',t,Sim_gamma.Values.Data(:,2),'b'),
legend('Commanded','Actual','location','SouthEast')
title('Flight path angle \gamma in degrees')
subplot(212)
plot(t,Sim_delta.Values.Data), grid
title('Elevator deflection \delta in degrees')

subplot(211)
plot(t,Sim_alpha.Values.Data), grid
title('Incidence \alpha in degrees')
subplot(212)
plot(t,Sim_V.Values.Data), grid
title('Speed V in m/s')

subplot(211)
plot(t,Sim_h.Values.Data), grid
title('Altitude h in meters')
subplot(212)
plot(t,Sim_az.Values.Data), grid
title('Normal acceleration a_z in g''s')

Tracking of the flight path angle profile remains good throughout the
maneuver. Note that the variations in incidence and speed cover most of the
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flight envelope considered here ([-20,20] degrees for and [700,1400] for ). And
while the autopilot was tuned for a nominal altitude of 3000 m, it fares well
despite altitude changing from 1,000 to 10,000 m.

The nonlinear simulation results confirm that the gain-scheduled autopilot
delivers consistently high performance throughout the flight envelope. The
simple explicit formulas for the gain dependence on the scheduling variables is
amenable to efficient hardware implementation. Alternatively, these formulas
can be readily converted into 2D lookup tables for further adjustment.

Related
Examples

• Gain Scheduled Control Of a Chemical Reactor

Concepts • “Gain-Scheduled Control Systems” on page 8-2
• “Parametric Gain Surfaces” on page 8-8
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